simonraj commited on
Commit
07c3d7c
·
verified ·
1 Parent(s): fc80d39

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -30
app.py CHANGED
@@ -36,6 +36,8 @@ PLACEHOLDER = """
36
  def bot_streaming(message, history):
37
  print(f'message is - {message}')
38
  print(f'history is - {history}')
 
 
39
  if message["files"]:
40
  if type(message["files"][-1]) == dict:
41
  image = message["files"][-1]["path"]
@@ -45,45 +47,60 @@ def bot_streaming(message, history):
45
  for hist in history:
46
  if type(hist[0]) == tuple:
47
  image = hist[0][0]
48
- try:
49
- if image is None:
50
- raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
51
- except NameError:
52
  raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
53
 
54
- conversation = []
55
- flag = False
56
- for user, assistant in history:
57
- if assistant is None:
58
- flag = True
59
- conversation.extend([{"role": "user", "content": ""}])
60
- continue
61
- if flag == True:
62
- conversation[0]['content'] = f"<|image_1|>\n{user}"
63
- conversation.extend([{"role": "assistant", "content": assistant}])
64
- flag = False
65
- continue
66
- conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
67
 
 
 
 
 
 
 
 
 
 
 
68
  if len(history) == 0:
69
- conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
 
 
 
70
  else:
71
- conversation.append({"role": "user", "content": message['text']})
72
- print(f"prompt is -\n{conversation}")
73
- prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
 
 
 
 
 
 
 
 
74
  image = Image.open(image)
75
- inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
 
 
 
 
 
 
 
 
 
 
 
76
 
77
- streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces': False,})
78
- generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)
 
79
 
80
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
81
- thread.start()
82
 
83
- buffer = ""
84
- for new_text in streamer:
85
- buffer += new_text
86
- yield buffer
87
 
88
 
89
 
 
36
  def bot_streaming(message, history):
37
  print(f'message is - {message}')
38
  print(f'history is - {history}')
39
+
40
+ image = None
41
  if message["files"]:
42
  if type(message["files"][-1]) == dict:
43
  image = message["files"][-1]["path"]
 
47
  for hist in history:
48
  if type(hist[0]) == tuple:
49
  image = hist[0][0]
50
+
51
+ if image is None:
 
 
52
  raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
53
 
54
+ # Default prompt if no text is provided by the user
55
+ default_prompt_text = "Identify and provide coaching cues for this exercise."
 
 
 
 
 
 
 
 
 
 
 
56
 
57
+ # Custom system prompt to guide the model's responses
58
+ system_prompt = (
59
+ "As Arnold Schwarzenegger, analyze the image to identify the exercise being performed. "
60
+ "Provide detailed coaching tips to improve the form, focusing on posture and common errors. "
61
+ "Use motivational and energetic language. If the image does not show an exercise, respond with: "
62
+ "'What are you doing? This is no time for games! Upload a real exercise picture and let's pump it up!'"
63
+ )
64
+
65
+ # Create the conversation history for the prompt
66
+ conversation = []
67
  if len(history) == 0:
68
+ if message['text'].strip() == "":
69
+ conversation.append({"role": "user", "content": f"<|image_1|>\n{default_prompt_text}"})
70
+ else:
71
+ conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
72
  else:
73
+ for user, assistant in history:
74
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
75
+ if message['text'].strip() == "":
76
+ conversation.append({"role": "user", "content": f"<|image_1|>\n{default_prompt_text}"})
77
+ else:
78
+ conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
79
+
80
+ # Format the prompt as specified in the Phi model guidelines
81
+ formatted_prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
82
+
83
+ # Open the image and prepare inputs
84
  image = Image.open(image)
85
+ inputs = processor(formatted_prompt, images=image, return_tensors="pt").to("cuda:0")
86
+
87
+ # Define generation arguments
88
+ generation_args = {
89
+ "max_new_tokens": 280,
90
+ "temperature": 0.0,
91
+ "do_sample": False,
92
+ "eos_token_id": processor.tokenizer.eos_token_id,
93
+ }
94
+
95
+ # Generate the response
96
+ generate_ids = model.generate(**inputs, **generation_args)
97
 
98
+ # Process the generated IDs to get the response text
99
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
100
+ response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
101
 
102
+ yield response
 
103
 
 
 
 
 
104
 
105
 
106