Spaces:
Running
on
T4
Running
on
T4
File size: 37,579 Bytes
e1a6cd9 f969e9c e1a6cd9 85bd48b e1a6cd9 f969e9c e1a6cd9 85bd48b e1a6cd9 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c 85bd48b f969e9c e1a6cd9 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c 85bd48b f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c e1a6cd9 f969e9c 85bd48b f969e9c 85bd48b f969e9c e1a6cd9 f969e9c 85bd48b f969e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
import json, time, os, sys, glob
import gradio as gr
sys.path.append("/home/user/app/ProteinMPNN/vanilla_proteinmpnn")
import matplotlib.pyplot as plt
import shutil
import warnings
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split, Subset
import copy
import torch.nn as nn
import torch.nn.functional as F
import random
import os
import os.path
from protein_mpnn_utils import (
loss_nll,
loss_smoothed,
gather_edges,
gather_nodes,
gather_nodes_t,
cat_neighbors_nodes,
_scores,
_S_to_seq,
tied_featurize,
parse_PDB,
)
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN
import plotly.express as px
import urllib
import jax.numpy as jnp
import tensorflow as tf
if "/home/user/app/af_backprop" not in sys.path:
sys.path.append("/home/user/app/af_backprop")
from utils import *
# import libraries
import colabfold as cf
from alphafold.common import protein
from alphafold.data import pipeline
from alphafold.model import data, config, model
from alphafold.common import residue_constants
import plotly.graph_objects as go
import ray
import re
import numpy as np
import jax
tf.config.set_visible_devices([], "GPU")
def chain_break(idx_res, Ls, length=200):
# Minkyung's code
# add big enough number to residue index to indicate chain breaks
L_prev = 0
for L_i in Ls[:-1]:
idx_res[L_prev + L_i :] += length
L_prev += L_i
return idx_res
def setup_model(seq, model_name="model_1_ptm"):
# setup model
cfg = config.model_config("model_1_ptm")
cfg.model.num_recycle = 0
cfg.data.common.num_recycle = 0
cfg.data.eval.max_msa_clusters = 1
cfg.data.common.max_extra_msa = 1
cfg.data.eval.masked_msa_replace_fraction = 0
cfg.model.global_config.subbatch_size = None
model_params = data.get_model_haiku_params(model_name=model_name, data_dir=".")
model_runner = model.RunModel(cfg, model_params, is_training=False)
Ls = [len(s) for s in seq.split("/")]
seq = re.sub("[^A-Z]", "", seq.upper())
length = len(seq)
feature_dict = {
**pipeline.make_sequence_features(
sequence=seq, description="none", num_res=length
),
**pipeline.make_msa_features(msas=[[seq]], deletion_matrices=[[[0] * length]]),
}
feature_dict["residue_index"] = chain_break(feature_dict["residue_index"], Ls)
inputs = model_runner.process_features(feature_dict, random_seed=0)
def runner(seq, opt):
# update sequence
inputs = opt["inputs"]
inputs.update(opt["prev"])
update_seq(seq, inputs)
update_aatype(inputs["target_feat"][..., 1:], inputs)
# mask prediction
mask = seq.sum(-1)
inputs["seq_mask"] = inputs["seq_mask"].at[:].set(mask)
inputs["msa_mask"] = inputs["msa_mask"].at[:].set(mask)
inputs["residue_index"] = jnp.where(mask == 1, inputs["residue_index"], 0)
# get prediction
key = jax.random.PRNGKey(0)
outputs = model_runner.apply(opt["params"], key, inputs)
prev = {
"init_msa_first_row": outputs["representations"]["msa_first_row"][None],
"init_pair": outputs["representations"]["pair"][None],
"init_pos": outputs["structure_module"]["final_atom_positions"][None],
}
aux = {
"final_atom_positions": outputs["structure_module"]["final_atom_positions"],
"final_atom_mask": outputs["structure_module"]["final_atom_mask"],
"plddt": get_plddt(outputs),
"pae": get_pae(outputs),
"inputs": inputs,
"prev": prev,
}
return aux
return jax.jit(runner), {"inputs": inputs, "params": model_params}
def make_tied_positions_for_homomers(pdb_dict_list):
my_dict = {}
for result in pdb_dict_list:
all_chain_list = sorted(
[item[-1:] for item in list(result) if item[:9] == "seq_chain"]
) # A, B, C, ...
tied_positions_list = []
chain_length = len(result[f"seq_chain_{all_chain_list[0]}"])
for i in range(1, chain_length + 1):
temp_dict = {}
for j, chain in enumerate(all_chain_list):
temp_dict[chain] = [i] # needs to be a list
tied_positions_list.append(temp_dict)
my_dict[result["name"]] = tied_positions_list
return my_dict
def renumber(struc):
"""Renumber residues consecutively and remove all hetero residues"""
resid = 0
residue_to_remove = []
chain_to_remove = []
for model in struc:
for chain in model:
for i, residue in enumerate(chain.get_residues()):
res_id = list(residue.id)
res_id[1] = resid
resid += 1
residue.id = tuple(res_id)
if residue.id[0] != " ":
residue_to_remove.append((chain.id, residue.id))
if len(chain) == 0:
chain_to_remove.append(chain.id)
for residue in residue_to_remove:
struc[0][residue[0]].detach_child(residue[1])
for chain in chain_to_remove:
model.detach_child(chain)
return struc
def align_structures(pdb1, pdb2, lenRes):
"""Take two structure and superimpose pdb1 on pdb2"""
import Bio.PDB
# We use all residues
atoms_to_be_aligned = range(0, lenRes)
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
# Get the structures
ref_structure = pdb_parser.get_structure("samle", pdb2)
sample_structure = renumber(pdb_parser.get_structure("reference", pdb1))
# Use the first model in the pdb-files for alignment
ref_model = ref_structure[0]
sample_model = sample_structure[0]
# Make a list of the atoms (in the structures) to align.
ref_atoms = []
sample_atoms = []
# Iterate of all chains in the model in order to find all residues
for ref_chain in ref_model:
# Iterate of all residues in each model in order to find proper atoms
for ref_res in ref_chain:
# Check if residue number ( .get_id() ) is in the list
if ref_res.get_id()[1] in atoms_to_be_aligned:
# Append CA atom to list
ref_atoms.append(ref_res["CA"])
for sample_chain in sample_model:
for sample_res in sample_chain:
if sample_res.get_id()[1] in atoms_to_be_aligned:
sample_atoms.append(sample_res["CA"])
# Now we initiate the superimposer:
super_imposer = Bio.PDB.Superimposer()
super_imposer.set_atoms(ref_atoms, sample_atoms)
super_imposer.apply(sample_model.get_atoms())
io = Bio.PDB.PDBIO()
io.set_structure(sample_structure)
io.save(f"{pdb1}_aligned.pdb")
return super_imposer.rms, f"{pdb1}_aligned.pdb"
def save_pdb(outs, filename, LEN):
"""save pdb coordinates"""
p = {
"residue_index": outs["inputs"]["residue_index"][0][:LEN],
"aatype": outs["inputs"]["aatype"].argmax(-1)[0][:LEN],
"atom_positions": outs["final_atom_positions"][:LEN],
"atom_mask": outs["final_atom_mask"][:LEN],
}
b_factors = 100.0 * outs["plddt"][:LEN, None] * p["atom_mask"]
p = protein.Protein(**p, b_factors=b_factors)
pdb_lines = protein.to_pdb(p)
with open(filename, "w") as f:
f.write(pdb_lines)
print(os.listdir(), os.getcwd())
@ray.remote(num_gpus=1, max_calls=1)
def run_alphafold(sequence):
recycles = 3
RUNNER, OPT = setup_model(sequence)
SEQ = re.sub("[^A-Z]", "", sequence.upper())
MAX_LEN = len(SEQ)
LEN = len(SEQ)
x = np.array([residue_constants.restype_order.get(aa, -1) for aa in SEQ])
x = np.pad(x, [0, MAX_LEN - LEN], constant_values=-1)
x = jax.nn.one_hot(x, 20)
OPT["prev"] = {
"init_msa_first_row": np.zeros([1, MAX_LEN, 256]),
"init_pair": np.zeros([1, MAX_LEN, MAX_LEN, 128]),
"init_pos": np.zeros([1, MAX_LEN, 37, 3]),
}
positions = []
plddts = []
for r in range(recycles + 1):
outs = RUNNER(x, OPT)
outs = jax.tree_map(lambda x: np.asarray(x), outs)
positions.append(outs["prev"]["init_pos"][0, :LEN])
plddts.append(outs["plddt"][:LEN])
OPT["prev"] = outs["prev"]
if recycles > 0:
print(r, plddts[-1].mean())
save_pdb(outs, "out.pdb", LEN)
num_res = int(outs["inputs"]["aatype"][0].sum())
return outs["plddt"], outs["pae"], num_res
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
model_name = "v_48_020" # ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030, v_32_002, v_32_010; v_32_020, v_32_030; v_48_010=version with 48 edges 0.10A noise
backbone_noise = 0.00 # Standard deviation of Gaussian noise to add to backbone atoms
path_to_model_weights = (
"/home/user/app/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights"
)
hidden_dim = 128
num_layers = 3
model_folder_path = path_to_model_weights
if model_folder_path[-1] != "/":
model_folder_path = model_folder_path + "/"
checkpoint_path = model_folder_path + f"{model_name}.pt"
checkpoint = torch.load(checkpoint_path, map_location=device)
noise_level_print = checkpoint["noise_level"]
model = ProteinMPNN(
num_letters=21,
node_features=hidden_dim,
edge_features=hidden_dim,
hidden_dim=hidden_dim,
num_encoder_layers=num_layers,
num_decoder_layers=num_layers,
augment_eps=backbone_noise,
k_neighbors=checkpoint["num_edges"],
)
model.to(device)
model.load_state_dict(checkpoint["model_state_dict"])
model.eval()
def get_pdb(pdb_code="", filepath=""):
if pdb_code is None or pdb_code == "":
return filepath.name
else:
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb")
return f"{pdb_code}.pdb"
def update(inp, file, designed_chain, fixed_chain, homomer, num_seqs, sampling_temp):
pdb_path = get_pdb(pdb_code=inp, filepath=file)
if designed_chain == "":
designed_chain_list = []
else:
designed_chain_list = re.sub("[^A-Za-z]+", ",", designed_chain).split(",")
if fixed_chain == "":
fixed_chain_list = []
else:
fixed_chain_list = re.sub("[^A-Za-z]+", ",", fixed_chain).split(",")
chain_list = list(set(designed_chain_list + fixed_chain_list))
num_seq_per_target = num_seqs
save_score = 0 # 0 for False, 1 for True; save score=-log_prob to npy files
save_probs = (
0 # 0 for False, 1 for True; save MPNN predicted probabilites per position
)
score_only = 0 # 0 for False, 1 for True; score input backbone-sequence pairs
conditional_probs_only = 0 # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)
conditional_probs_only_backbone = 0 # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)
batch_size = 1 # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory
max_length = 20000 # Max sequence length
out_folder = "." # Path to a folder to output sequences, e.g. /home/out/
jsonl_path = "" # Path to a folder with parsed pdb into jsonl
omit_AAs = "X" # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.
pssm_multi = 0.0 # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions
pssm_threshold = 0.0 # A value between -inf + inf to restric per position AAs
pssm_log_odds_flag = 0 # 0 for False, 1 for True
pssm_bias_flag = 0 # 0 for False, 1 for True
folder_for_outputs = out_folder
NUM_BATCHES = num_seq_per_target // batch_size
BATCH_COPIES = batch_size
temperatures = [sampling_temp]
omit_AAs_list = omit_AAs
alphabet = "ACDEFGHIKLMNPQRSTVWYX"
omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)
chain_id_dict = None
fixed_positions_dict = None
pssm_dict = None
omit_AA_dict = None
bias_AA_dict = None
bias_by_res_dict = None
bias_AAs_np = np.zeros(len(alphabet))
###############################################################
pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list)
dataset_valid = StructureDatasetPDB(
pdb_dict_list, truncate=None, max_length=max_length
)
if homomer:
tied_positions_dict = make_tied_positions_for_homomers(pdb_dict_list)
else:
tied_positions_dict = None
chain_id_dict = {}
chain_id_dict[pdb_dict_list[0]["name"]] = (designed_chain_list, fixed_chain_list)
with torch.no_grad():
for ix, protein in enumerate(dataset_valid):
score_list = []
all_probs_list = []
all_log_probs_list = []
S_sample_list = []
batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)]
(
X,
S,
mask,
lengths,
chain_M,
chain_encoding_all,
chain_list_list,
visible_list_list,
masked_list_list,
masked_chain_length_list_list,
chain_M_pos,
omit_AA_mask,
residue_idx,
dihedral_mask,
tied_pos_list_of_lists_list,
pssm_coef,
pssm_bias,
pssm_log_odds_all,
bias_by_res_all,
tied_beta,
) = tied_featurize(
batch_clones,
device,
chain_id_dict,
fixed_positions_dict,
omit_AA_dict,
tied_positions_dict,
pssm_dict,
bias_by_res_dict,
)
pssm_log_odds_mask = (
pssm_log_odds_all > pssm_threshold
).float() # 1.0 for true, 0.0 for false
name_ = batch_clones[0]["name"]
randn_1 = torch.randn(chain_M.shape, device=X.device)
log_probs = model(
X,
S,
mask,
chain_M * chain_M_pos,
residue_idx,
chain_encoding_all,
randn_1,
)
mask_for_loss = mask * chain_M * chain_M_pos
scores = _scores(S, log_probs, mask_for_loss)
native_score = scores.cpu().data.numpy()
message = ""
for temp in temperatures:
for j in range(NUM_BATCHES):
randn_2 = torch.randn(chain_M.shape, device=X.device)
if tied_positions_dict == None:
sample_dict = model.sample(
X,
randn_2,
S,
chain_M,
chain_encoding_all,
residue_idx,
mask=mask,
temperature=temp,
omit_AAs_np=omit_AAs_np,
bias_AAs_np=bias_AAs_np,
chain_M_pos=chain_M_pos,
omit_AA_mask=omit_AA_mask,
pssm_coef=pssm_coef,
pssm_bias=pssm_bias,
pssm_multi=pssm_multi,
pssm_log_odds_flag=bool(pssm_log_odds_flag),
pssm_log_odds_mask=pssm_log_odds_mask,
pssm_bias_flag=bool(pssm_bias_flag),
bias_by_res=bias_by_res_all,
)
S_sample = sample_dict["S"]
else:
sample_dict = model.tied_sample(
X,
randn_2,
S,
chain_M,
chain_encoding_all,
residue_idx,
mask=mask,
temperature=temp,
omit_AAs_np=omit_AAs_np,
bias_AAs_np=bias_AAs_np,
chain_M_pos=chain_M_pos,
omit_AA_mask=omit_AA_mask,
pssm_coef=pssm_coef,
pssm_bias=pssm_bias,
pssm_multi=pssm_multi,
pssm_log_odds_flag=bool(pssm_log_odds_flag),
pssm_log_odds_mask=pssm_log_odds_mask,
pssm_bias_flag=bool(pssm_bias_flag),
tied_pos=tied_pos_list_of_lists_list[0],
tied_beta=tied_beta,
bias_by_res=bias_by_res_all,
)
# Compute scores
S_sample = sample_dict["S"]
log_probs = model(
X,
S_sample,
mask,
chain_M * chain_M_pos,
residue_idx,
chain_encoding_all,
randn_2,
use_input_decoding_order=True,
decoding_order=sample_dict["decoding_order"],
)
mask_for_loss = mask * chain_M * chain_M_pos
scores = _scores(S_sample, log_probs, mask_for_loss)
scores = scores.cpu().data.numpy()
all_probs_list.append(sample_dict["probs"].cpu().data.numpy())
all_log_probs_list.append(log_probs.cpu().data.numpy())
S_sample_list.append(S_sample.cpu().data.numpy())
for b_ix in range(BATCH_COPIES):
masked_chain_length_list = masked_chain_length_list_list[b_ix]
masked_list = masked_list_list[b_ix]
seq_recovery_rate = torch.sum(
torch.sum(
torch.nn.functional.one_hot(S[b_ix], 21)
* torch.nn.functional.one_hot(S_sample[b_ix], 21),
axis=-1,
)
* mask_for_loss[b_ix]
) / torch.sum(mask_for_loss[b_ix])
seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])
score = scores[b_ix]
score_list.append(score)
native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])
if b_ix == 0 and j == 0 and temp == temperatures[0]:
start = 0
end = 0
list_of_AAs = []
for mask_l in masked_chain_length_list:
end += mask_l
list_of_AAs.append(native_seq[start:end])
start = end
native_seq = "".join(
list(np.array(list_of_AAs)[np.argsort(masked_list)])
)
l0 = 0
for mc_length in list(
np.array(masked_chain_length_list)[
np.argsort(masked_list)
]
)[:-1]:
l0 += mc_length
native_seq = native_seq[:l0] + "/" + native_seq[l0:]
l0 += 1
sorted_masked_chain_letters = np.argsort(
masked_list_list[0]
)
print_masked_chains = [
masked_list_list[0][i]
for i in sorted_masked_chain_letters
]
sorted_visible_chain_letters = np.argsort(
visible_list_list[0]
)
print_visible_chains = [
visible_list_list[0][i]
for i in sorted_visible_chain_letters
]
native_score_print = np.format_float_positional(
np.float32(native_score.mean()),
unique=False,
precision=4,
)
line = ">{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\n{}\n".format(
name_,
native_score_print,
print_visible_chains,
print_masked_chains,
model_name,
native_seq,
)
message += f"{line}\n"
start = 0
end = 0
list_of_AAs = []
for mask_l in masked_chain_length_list:
end += mask_l
list_of_AAs.append(seq[start:end])
start = end
seq = "".join(
list(np.array(list_of_AAs)[np.argsort(masked_list)])
)
l0 = 0
for mc_length in list(
np.array(masked_chain_length_list)[np.argsort(masked_list)]
)[:-1]:
l0 += mc_length
seq = seq[:l0] + "/" + seq[l0:]
l0 += 1
score_print = np.format_float_positional(
np.float32(score), unique=False, precision=4
)
seq_rec_print = np.format_float_positional(
np.float32(seq_recovery_rate.detach().cpu().numpy()),
unique=False,
precision=4,
)
line = (
">T={}, sample={}, score={}, seq_recovery={}\n{}\n".format(
temp, b_ix, score_print, seq_rec_print, seq
)
)
message += f"{line}\n"
all_probs_concat = np.concatenate(all_probs_list)
all_log_probs_concat = np.concatenate(all_log_probs_list)
np.savetxt("all_probs_concat.csv", all_probs_concat.mean(0).T, delimiter=",")
np.savetxt(
"all_log_probs_concat.csv",
np.exp(all_log_probs_concat).mean(0).T,
delimiter=",",
)
S_sample_concat = np.concatenate(S_sample_list)
fig = px.imshow(
np.exp(all_log_probs_concat).mean(0).T,
labels=dict(x="positions", y="amino acids", color="probability"),
y=list(alphabet),
template="simple_white",
)
fig.update_xaxes(side="top")
fig_tadjusted = px.imshow(
all_probs_concat.mean(0).T,
labels=dict(x="positions", y="amino acids", color="probability"),
y=list(alphabet),
template="simple_white",
)
fig_tadjusted.update_xaxes(side="top")
return (
message,
fig,
fig_tadjusted,
gr.File.update(value="all_log_probs_concat.csv", visible=True),
gr.File.update(value="all_probs_concat.csv", visible=True),
pdb_path,
)
def update_AF(startsequence, pdb):
# # run alphafold using ray
plddts, pae, num_res = ray.get(run_alphafold.remote(startsequence))
x = np.arange(10)
plotAF_plddt = go.Figure(
data=go.Scatter(
x=np.arange(len(plddts)),
y=plddts,
hovertemplate="<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}",
)
)
plotAF_plddt.update_layout(
title="pLDDT",
xaxis_title="Residue index",
yaxis_title="pLDDT",
height=500,
template="simple_white",
)
plotAF_pae = px.imshow(
pae,
labels=dict(x="Scored residue", y="Aligned residue", color=""),
)
plotAF_pae.update_layout(title="Predicted Aligned Error", template="simple_white")
return molecule(pdb, "af_backprop/out.pdb", num_res), plotAF_plddt, plotAF_pae
def read_mol(molpath):
with open(molpath, "r") as fp:
lines = fp.readlines()
mol = ""
for l in lines:
mol += l
return mol
def molecule(pdb, afpdb, num_res):
rms, aligned_pdb = align_structures(pdb, afpdb, num_res)
mol = read_mol(pdb)
pred_mol = read_mol(aligned_pdb)
x = (
"""<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="https://unpkg.com/[email protected]/dist/flowbite.min.css" />
<style>
body{
font-family:sans-serif
}
.mol-container {
width: 100%;
height: 800px;
position: relative;
}
.space-x-2 > * + *{
margin-left: 0.5rem;
}
.p-1{
padding:0.5rem;
}
.flex{
display:flex;
align-items: center;
}
.w-4{
width:1rem;
}
.h-4{
height:1rem;
}
.mt-4{
margin-top:1rem;
}
select{
background-image:None;
}
</style>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
</head>
<body>
<div id="container" class="mol-container"></div>
<div class="flex">
<div class="px-4">
<label for="sidechain" class="relative inline-flex items-center mb-4 cursor-pointer ">
<input id="sidechain"type="checkbox" class="sr-only peer">
<div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div>
<span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show side chains</span>
</label>
</div>
<button type="button" class="text-gray-900 bg-white hover:bg-gray-100 border border-gray-200 focus:ring-4 focus:outline-none focus:ring-gray-100 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center dark:focus:ring-gray-600 dark:bg-gray-800 dark:border-gray-700 dark:text-white dark:hover:bg-gray-700 mr-2 mb-2" id="download">
<svg class="w-6 h-6 mr-2 -ml-1" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 16v1a3 3 0 003 3h10a3 3 0 003-3v-1m-4-4l-4 4m0 0l-4-4m4 4V4"></path></svg>
Download predicted structure
</button>
</div>
<div class="text-sm">
<div class="font-medium mt-4"><b>AlphaFold model confidence:</b></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(0, 83, 214);"> </span><span class="legendlabel">Very high
(pLDDT > 90)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(101, 203, 243);"> </span><span class="legendlabel">Confident
(90 > pLDDT > 70)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(255, 219, 19);"> </span><span class="legendlabel">Low (70 >
pLDDT > 50)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(255, 125, 69);"> </span><span class="legendlabel">Very low
(pLDDT < 50)</span></div>
<div class="row column legendDesc"> AlphaFold produces a per-residue confidence
score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation.
</div>
</div>
<script>
let viewer = null;
let voldata = null;
$(document).ready(function () {
let element = $("#container");
let config = { backgroundColor: "white" };
viewer = $3Dmol.createViewer( element, config );
viewer.ui.initiateUI();
let data = `"""
+ pred_mol
+ """`
let pdb = `"""
+ mol
+ """`
viewer.addModel( data, "pdb" );
viewer.addModel( pdb, "pdb" );
//AlphaFold code from https://gist.github.com/piroyon/30d1c1099ad488a7952c3b21a5bebc96
let colorAlpha = function (atom) {
if (atom.b < 50) {
return "OrangeRed";
} else if (atom.b < 70) {
return "Gold";
} else if (atom.b < 90) {
return "MediumTurquoise";
} else {
return "Blue";
}
};
viewer.setStyle({}, { cartoon: { colorfunc: colorAlpha } });
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
viewer.getModel(0).setHoverable({}, true,
function (atom, viewer, event, container) {
console.log(atom)
if (!atom.label) {
atom.label = viewer.addLabel(atom.resn+atom.resi+" pLDDT=" + atom.b, { position: atom, backgroundColor: "mintcream", fontColor: "black" });
}
},
function (atom, viewer) {
if (atom.label) {
viewer.removeLabel(atom.label);
delete atom.label;
}
}
);
$("#sidechain").change(function () {
if (this.checked) {
BB = ["C", "O", "N"]
viewer.setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }});
viewer.render()
} else {
viewer.setStyle({cartoon: { colorfunc: colorAlpha }});
viewer.render()
}
});
$("#download").click(function () {
download(\""""
+ aligned_pdb
+ """\", data);
})
});
function download(filename, text) {
var element = document.createElement("a");
element.setAttribute("href", "data:text/plain;charset=utf-8," + encodeURIComponent(text));
element.setAttribute("download", filename);
element.style.display = "none";
document.body.appendChild(element);
element.click();
document.body.removeChild(element);
}
</script>
</body></html>"""
)
return f"""<iframe style="width: 800px; height: 1200px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def set_examples(example):
label, inp, designed_chain, fixed_chain, homomer, num_seqs, sampling_temp = example
return [
label,
inp,
designed_chain,
fixed_chain,
homomer,
gr.Slider.update(value=num_seqs),
gr.Radio.update(value=sampling_temp),
]
proteinMPNN = gr.Blocks()
with proteinMPNN:
gr.Markdown("# ProteinMPNN")
gr.Markdown(
"""This model takes as input a protein structure and based on its backbone predicts new sequences that will fold into that backbone.
Optionally, we can run AlphaFold2 on the predicted sequence to check whether the predicted sequences adopt the same backbone (WIP).
"""
)
gr.Markdown("![](https://simonduerr.eu/ProteinMPNN.png)")
with gr.Tabs():
with gr.TabItem("Input"):
inp = gr.Textbox(
placeholder="PDB Code or upload file below", label="Input structure"
)
file = gr.File(file_count="single", type="file")
with gr.TabItem("Settings"):
with gr.Row():
designed_chain = gr.Textbox(value="A", label="Designed chain")
fixed_chain = gr.Textbox(
placeholder="Use commas to fix multiple chains", label="Fixed chain"
)
with gr.Row():
num_seqs = gr.Slider(
minimum=1, maximum=50, value=1, step=1, label="Number of sequences"
)
sampling_temp = gr.Radio(
choices=[0.1, 0.15, 0.2, 0.25, 0.3],
value=0.1,
label="Sampling temperature",
)
with gr.Row():
homomer = gr.Checkbox(value=False, label="Homomer?")
gr.Markdown(
"for correct symmetric tying lenghts of homomer chains should be the same"
)
btn = gr.Button("Run")
label = gr.Textbox(label="Label", visible=False)
examples = gr.Dataset(
components=[
label,
inp,
designed_chain,
fixed_chain,
homomer,
num_seqs,
sampling_temp,
],
samples=[
["Homomer design", "1O91", "A,B,C", "", True, 2, 0.1],
["Monomer design", "6MRR", "A", "", False, 2, 0.1],
["Redesign of Homomer to Heteromer", "3HTN", "A,B", "C", False, 2, 0.1],
],
)
gr.Markdown(
""" Sampling temperature for amino acids, `T=0.0` means taking argmax, `T>>1.0` means sample randomly. Suggested values `0.1, 0.15, 0.2, 0.25, 0.3`. Higher values will lead to more diversity.
"""
)
gr.Markdown("# Output")
with gr.Tabs():
with gr.TabItem("Designed sequences"):
out = gr.Textbox(label="Status")
with gr.TabItem("Amino acid probabilities"):
plot = gr.Plot()
all_log_probs = gr.File(visible=False)
with gr.TabItem("T adjusted probabilities"):
gr.Markdown("Sampling temperature adjusted amino acid probabilties")
plot_tadjusted = gr.Plot()
all_probs = gr.File(visible=False)
with gr.TabItem("Structure validation w/ AF2"):
# gr.Markdown("Coming soon")
with gr.Row():
chosen_seq = gr.Textbox(
label="Copy and paste a sequence for validation"
)
btnAF = gr.Button("Run AF2 on sequence")
mol = gr.HTML()
with gr.Row():
plotAF_plddt = gr.Plot(label="pLDDT")
plotAF_pae = gr.Plot(label="PAE")
file = gr.Variable()
btn.click(
fn=update,
inputs=[
inp,
file,
designed_chain,
fixed_chain,
homomer,
num_seqs,
sampling_temp,
],
outputs=[out, plot, plot_tadjusted, all_log_probs, all_probs, file],
)
btnAF.click(
fn=update_AF,
inputs=[chosen_seq, file],
outputs=[mol, plotAF_plddt, plotAF_pae],
)
examples.click(fn=set_examples, inputs=examples, outputs=examples.components)
gr.Markdown(
"""Citation: **Robust deep learning based protein sequence design using ProteinMPNN** <br>
Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Alexis Courbet, Robbert J. de Haas, Neville Bethel, Philip J. Y. Leung, Timothy F. Huddy, Sam Pellock, Doug Tischer, Frederick Chan, Brian Koepnick, Hannah Nguyen, Alex Kang, Banumathi Sankaran, Asim Bera, Neil P. King, David Baker <br>
bioRxiv 2022.06.03.494563; doi: [10.1101/2022.06.03.494563](https://doi.org/10.1101/2022.06.03.494563) <br><br> Server built by [@simonduerr](https://twitter.com/simonduerr) and hosted by Huggingface"""
)
ray.init(runtime_env={"working_dir": "./af_backprop"})
proteinMPNN.launch(share=True)
|