Spaces:
Runtime error
Runtime error
import argparse | |
import numpy as np | |
import connexion | |
from flask_cors import CORS | |
from flask import render_template, redirect, send_from_directory | |
import utils.path_fixes as pf | |
from utils.f import ifnone | |
from data_processing import from_model | |
from model_api import get_details | |
app = connexion.FlaskApp(__name__, static_folder="client/dist", specification_dir=".") | |
flask_app = app.app | |
CORS(flask_app) | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--debug", action="store_true", help=" Debug mode") | |
parser.add_argument("--port", default=5050, help="Port to run the app. ") | |
# Flask main routes | |
def hello_world(): | |
return redirect("client/exBERT.html") | |
# send everything from client as static content | |
def send_static_client(path): | |
""" serves all files from ./client/ to ``/client/<path:path>`` | |
:param path: path from api call | |
""" | |
return send_from_directory(str(pf.CLIENT_DIST), path) | |
# ====================================================================== | |
## CONNEXION API ## | |
# ====================================================================== | |
def get_model_details(**request): | |
"""Get important information about a model, like the number of layers and heads | |
Args: | |
request['model']: The model name | |
Returns: | |
{ | |
status: 200, | |
payload: { | |
nlayers (int) | |
nheads (int) | |
} | |
} | |
""" | |
mname = request['model'] | |
deets = get_details(mname) | |
info = deets.config | |
nlayers = info.num_hidden_layers | |
nheads = info.num_attention_heads | |
payload_out = { | |
"nlayers": nlayers, | |
"nheads": nheads, | |
} | |
return { | |
"status": 200, | |
"payload": payload_out, | |
} | |
def get_attentions_and_preds(**request): | |
"""For a sentence, at a layer, get the attentions and predictions | |
Args: | |
request['model']: Model name | |
request['sentence']: Sentence to get the attentions for | |
request['layer']: Which layer to extract from | |
Returns: | |
{ | |
status: 200 | |
payload: { | |
aa: { | |
att: Array((nheads, ntoks, ntoks)) | |
left: [{ | |
text (str), | |
topk_words (List[str]), | |
topk_probs (List[float]) | |
}, ...] | |
right: [{ | |
text (str), | |
topk_words (List[str]), | |
topk_probs (List[float]) | |
}, ...] | |
} | |
} | |
} | |
""" | |
model = request["model"] | |
details = get_details(model) | |
sentence = request["sentence"] | |
layer = int(request["layer"]) | |
deets = details.att_from_sentence(sentence) | |
payload_out = deets.to_json(layer) | |
return { | |
"status": 200, | |
"payload": payload_out | |
} | |
def update_masked_attention(**request): | |
"""From tokens and indices of what should be masked, get the attentions and predictions | |
payload = request['payload'] | |
Args: | |
payload['model'] (str): Model name | |
payload['tokens'] (List[str]): Tokens to pass through the model | |
payload['sentence'] (str): Original sentence the tokens came from | |
payload['mask'] (List[int]): Which indices to mask | |
payload['layer'] (int): Which layer to extract information from | |
Returns: | |
{ | |
status: 200 | |
payload: { | |
aa: { | |
att: Array((nheads, ntoks, ntoks)) | |
left: [{ | |
text (str), | |
topk_words (List[str]), | |
topk_probs (List[float]) | |
}, ...] | |
right: [{ | |
text (str), | |
topk_words (List[str]), | |
topk_probs (List[float]) | |
}, ...] | |
} | |
} | |
} | |
""" | |
payload = request["payload"] | |
model = payload['model'] | |
details = get_details(model) | |
tokens = payload["tokens"] | |
sentence = payload["sentence"] | |
mask = payload["mask"] | |
layer = int(payload["layer"]) | |
MASK = details.aligner.mask_token | |
mask_tokens = lambda toks, maskinds: [ | |
t if i not in maskinds else ifnone(MASK, t) for (i, t) in enumerate(toks) | |
] | |
token_inputs = mask_tokens(tokens, mask) | |
deets = details.att_from_tokens(token_inputs, sentence) | |
payload_out = deets.to_json(layer) | |
return { | |
"status": 200, | |
"payload": payload_out, | |
} | |
app.add_api("swagger.yaml") | |
# Setup code | |
if __name__ != "__main__": | |
print("SETTING UP ENDPOINTS") | |
# Then deploy app | |
else: | |
args, _ = parser.parse_known_args() | |
print("Initiating app") | |
app.run(port=args.port, use_reloader=False, debug=args.debug) | |