Spaces:
Runtime error
Runtime error
File size: 18,336 Bytes
c2e96d2 4b287ff eeb4af6 c2e96d2 461d979 c2e96d2 796633c 4d122d3 c2e96d2 de63645 21d5f41 de63645 a590013 de63645 47ea09b de63645 461d979 c2e96d2 0f370cf c2e96d2 4d122d3 bc62600 90963cb c2e96d2 4a757d2 ac0ce45 4a757d2 c2e96d2 4a757d2 ac0ce45 4a757d2 c2e96d2 4a757d2 cad50ee c2e96d2 ac0ce45 cad50ee b151eb9 4a757d2 cad50ee 509539f b151eb9 4a757d2 ac0ce45 4a757d2 c2e96d2 4a757d2 ac0ce45 4a757d2 eeb4af6 796633c c2e96d2 4a757d2 4b287ff 4a757d2 c2e96d2 4a757d2 c2e96d2 de63645 b8bca3f 6a73865 4138dc4 de63645 4138dc4 c2e96d2 b9f8924 d2e5583 b9f8924 4d122d3 c2e96d2 4d122d3 18fc70d e5ccbba 4d122d3 b9f8924 4d122d3 b9f8924 4d122d3 c2e96d2 b151eb9 c303ab0 00ef2fe 4d122d3 00ef2fe c303ab0 b151eb9 4a757d2 ac0ce45 4a757d2 c303ab0 90963cb c303ab0 c2e96d2 c303ab0 c2e96d2 00ef2fe c2e96d2 00ef2fe c2e96d2 00ef2fe c2e96d2 00ef2fe c2e96d2 4d122d3 c2e96d2 cad50ee c2e96d2 4d122d3 05c7809 4d122d3 05c7809 4d122d3 05c7809 4d122d3 c2e96d2 05c7809 00ef2fe c2e96d2 3f71c95 c2e96d2 ac0ce45 853dea9 c2e96d2 01cb633 c2e96d2 b151eb9 ac0ce45 7e89d2e 4a757d2 c2e96d2 509539f c2e96d2 cad50ee c2e96d2 c303ab0 c2e96d2 e0f49e7 c2e96d2 93279b2 4d122d3 93279b2 c2e96d2 93279b2 00ef2fe c2e96d2 00ef2fe c2e96d2 b151eb9 c2e96d2 c303ab0 00ef2fe 4d122d3 00ef2fe c2e96d2 00ef2fe c2e96d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import spaces
import os
import torch
import random
from huggingface_hub import snapshot_download
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from diffusers import (
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSDEScheduler,
HeunDiscreteScheduler,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
)
from diffusers.models.attention_processor import AttnProcessor2_0
import gradio as gr
from PIL import Image
import numpy as np
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
from safetensors.torch import load_file
import requests
from RealESRGAN import RealESRGAN
import os
from unittest.mock import patch
from typing import Union
from transformers.dynamic_module_utils import get_imports
def fixed_get_imports(filename):
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
if not str(filename).endswith("/modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
imports.remove("flash_attn")
return imports
import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
def download_file(url, folder_path, filename):
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path):
print(f"File already exists: {file_path}")
else:
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
file.write(chunk)
print(f"File successfully downloaded and saved: {file_path}")
else:
print(f"Error downloading the file. Status code: {response.status_code}")
# Download ESRGAN models
download_file("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth")
download_file("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth")
download_file("https://huggingface.co/silveroxides/sdxl_lowstep_beta_v1/resolve/main/pytorch_lora_weights.safetensors?download=true", "models/lora/", "LowStepBeta_v001.safetensors")
# Download the model files
ckpt_dir_realpony = snapshot_download(repo_id="silveroxides/RNS_RealPonyV20")
ckpt_dir_noobai = snapshot_download(repo_id="silveroxides/NoobAI-XL-EPS-1.0-Vwe")
ckpt_dir_hybridpony = snapshot_download(repo_id="silveroxides/RealHybridPony")
# Load the models
vae_realpony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_realpony, "vae"), torch_dtype=torch.float16)
vae_noobai = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_noobai, "vae"), torch_dtype=torch.float16)
vae_hybridpony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_hybridpony, "vae"), torch_dtype=torch.float16)
pipe_realpony = StableDiffusionXLPipeline.from_pretrained(
ckpt_dir_realpony,
vae=vae_realpony,
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe_noobai = StableDiffusionXLPipeline.from_pretrained(
ckpt_dir_noobai,
vae=vae_noobai,
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe_hybridpony = StableDiffusionXLPipeline.from_pretrained(
ckpt_dir_hybridpony,
vae=vae_hybridpony,
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe_realpony = pipe_realpony.to("cuda")
pipe_noobai = pipe_noobai.to("cuda")
pipe_hybridpony = pipe_hybridpony.to("cuda")
pipe_realpony.unet.set_attn_processor(AttnProcessor2_0())
pipe_noobai.unet.set_attn_processor(AttnProcessor2_0())
pipe_hybridpony.unet.set_attn_processor(AttnProcessor2_0())
# Define samplers
samplers = {
"Euler a": EulerAncestralDiscreteScheduler.from_config(pipe_realpony.scheduler.config),
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe_realpony.scheduler.config, use_karras_sigmas=True),
"Heun": HeunDiscreteScheduler.from_config(pipe_realpony.scheduler.config),
# New samplers
"DPM++ 2M SDE Karras": DPMSolverMultistepScheduler.from_config(pipe_realpony.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"),
"DPM++ 2M": DPMSolverMultistepScheduler.from_config(pipe_realpony.scheduler.config),
"DDIM": DDIMScheduler.from_config(pipe_realpony.scheduler.config),
"LMS": LMSDiscreteScheduler.from_config(pipe_realpony.scheduler.config),
"PNDM": PNDMScheduler.from_config(pipe_realpony.scheduler.config),
"UniPC": UniPCMultistepScheduler.from_config(pipe_realpony.scheduler.config),
}
DEFAULT_POSITIVE_PREFIX = "score_8_up, score_7_up, accurate, genuine"
DEFAULT_POSITIVE_SUFFIX = "perfect composition, detailed, photorealism, real life, raw, reality, cinematic"
DEFAULT_NEGATIVE_PREFIX = "score_1, score_2, score_3, text, artist name, signature, watermark, logo, url, web address"
DEFAULT_NEGATIVE_SUFFIX = "low quality, low resolution, simple background, bad composition, deformed, disfigured, sketch, unfinished"
# Initialize Florence model
device = "cuda" if torch.cuda.is_available() else "cpu"
# lora_model_path = "models/lora/LowStepBeta_v001.safetensors"
# lora = load_file(lora_model_path, device=device)
#def load_models():
#with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
#return florence_model, florence_processor
#florence_model, florence_processor = load_models()
# Prompt Enhancer
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
class LazyRealESRGAN:
def __init__(self, device, scale):
self.device = device
self.scale = scale
self.model = None
def load_model(self):
if self.model is None:
self.model = RealESRGAN(self.device, scale=self.scale)
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
def predict(self, img):
self.load_model()
return self.model.predict(img)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
# Florence caption function
def florence_caption(image):
# Convert image to PIL if it's not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<DETAILED_CAPTION>"]
# Prompt Enhancer function
def enhance_prompt(input_prompt, model_choice):
if model_choice == "Medium":
result = enhancer_medium("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
else: # Long
result = enhancer_long("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
return enhanced_text
def upscale_image(image, scale):
# Ensure image is a PIL Image object
if not isinstance(image, Image.Image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
else:
raise ValueError("Input must be a PIL Image or a numpy array")
if scale == 2:
return lazy_realesrgan_x2.predict(image)
elif scale == 4:
return lazy_realesrgan_x4.predict(image)
else:
return image
@spaces.GPU(duration=120)
def generate_image(model_choice, additional_positive_prompt, additional_negative_prompt, height, width, num_inference_steps,
guidance_scale, pag_scale, pag_layers, num_images_per_prompt, use_lowstep_lora, use_random_seed, seed, sampler, clip_skip,
use_florence2, use_medium_enhancer, use_long_enhancer,
use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix,
use_upscaler, upscale_factor,
input_image=None, progress=gr.Progress(track_tqdm=True)):
# Select the appropriate pipe based on the model choice
if model_choice == "Real Pony RNS":
pipe = pipe_realpony
elif model_choice == "NoobAI-XL EPS 1.0":
pipe = pipe_noobai
else: # "Hybrid Pony SDXL"
pipe = pipe_hybridpony
if use_lowstep_lora:
pipe.load_lora_weights("./models/lora", weight_name="LowStepBeta_v001.safetensors")
if use_random_seed:
seed = random.randint(0, 2**32 - 1)
else:
seed = int(seed) # Ensure seed is an integer
# Set the scheduler based on the selected sampler
pipe.scheduler = samplers[sampler]
# Set clip skip
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
# Start with the default positive prompt prefix if enabled
full_positive_prompt = DEFAULT_POSITIVE_PREFIX + ", " if use_positive_prefix else ""
# Add Florence-2 caption if enabled and image is provided
if use_florence2 and input_image is not None:
florence2_caption = florence_caption(input_image)
florence2_caption = florence2_caption.lower().replace('.', ',')
additional_positive_prompt = f"{florence2_caption}, {additional_positive_prompt}" if additional_positive_prompt else florence2_caption
# Enhance only the additional positive prompt if enhancers are enabled
if additional_positive_prompt:
enhanced_prompt = additional_positive_prompt
if use_medium_enhancer:
medium_enhanced = enhance_prompt(enhanced_prompt, "Medium")
medium_enhanced = medium_enhanced.lower().replace('.', ',')
enhanced_prompt = f"{enhanced_prompt}, {medium_enhanced}"
if use_long_enhancer:
long_enhanced = enhance_prompt(enhanced_prompt, "Long")
long_enhanced = long_enhanced.lower().replace('.', ',')
enhanced_prompt = f"{enhanced_prompt}, {long_enhanced}"
full_positive_prompt += enhanced_prompt
# Add the default positive suffix if enabled
if use_positive_suffix:
full_positive_prompt += f", {DEFAULT_POSITIVE_SUFFIX}"
# Combine default negative prompt with additional negative prompt
full_negative_prompt = ""
if use_negative_prefix:
full_negative_prompt += f"{DEFAULT_NEGATIVE_PREFIX}, "
full_negative_prompt += additional_negative_prompt if additional_negative_prompt else ""
if use_negative_suffix:
full_negative_prompt += f", {DEFAULT_NEGATIVE_SUFFIX}"
try:
images = pipe(
prompt=full_positive_prompt,
negative_prompt=full_negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
pag_scale=pag_scale,
pag_layers=pag_layers,
num_images_per_prompt=num_images_per_prompt,
generator=torch.Generator(pipe.device).manual_seed(seed)
).images
if use_upscaler:
print("Upscaling images")
upscaled_images = []
for i, img in enumerate(images):
print(f"Upscaling image {i+1}")
if not isinstance(img, Image.Image):
print(f"Converting image {i+1} to PIL Image")
img = Image.fromarray(np.uint8(img))
upscaled_img = upscale_image(img, upscale_factor)
upscaled_images.append(upscaled_img)
images = upscaled_images
print("Returning results")
return images, seed, full_positive_prompt, full_negative_prompt
except Exception as e:
print(f"Error during image generation: {str(e)}")
import traceback
traceback.print_exc()
return None, seed, full_positive_prompt, full_negative_prompt
# Gradio interface
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
gr.HTML("""
<h1 align="center">Real Pony RNS / NoobAI-XL EPS 1.0 / Hybrid Pony SDXL</h1>
<p align="center">
<a href="https://huggingface.co/silveroxides/RNS_RealPonyV20" target="_blank">[RNS RealPony]</a>
<a href="https://huggingface.co/silveroxides/NoobAI-XL-EPS-1.0-Vwe" target="_blank">[NoobAI-XL EPS 1.0]</a>
<a href="https://huggingface.co/silveroxides/RealHybridPony" target="_blank">[Hybrid Pony SDXL]</a><br>
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance" target="_blank">[Prompt Enhancer Medium]</a>
</p>
""")
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Dropdown(
["Real Pony RNS", "NoobAI-XL EPS 1.0", "Hybrid Pony SDXL"],
label="Model Choice",
value="Real Pony RNS")
positive_prompt = gr.Textbox(label="Positive Prompt", placeholder="Add your positive prompt here")
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Add your negative prompt here")
with gr.Accordion("Advanced settings", open=False):
height = gr.Slider(512, 2048, 1024, step=64, label="Height")
width = gr.Slider(512, 2048, 1024, step=64, label="Width")
num_inference_steps = gr.Slider(20, 100, 30, step=1, label="Number of Inference Steps")
guidance_scale = gr.Slider(1, 20, 6, step=0.1, label="Guidance Scale")
pag_scale = gr.Number(label="Pag Scale", value=3.0)
pag_layers = gr.Dropdown(label="Model layers to apply Pag to", info="mid is the one used on the paper, up and down blocks seem unstable", choices=["up", "mid", "down"], multiselect=True, value="mid")
num_images_per_prompt = gr.Slider(1, 4, 1, step=1, label="Number of images per prompt")
use_lowstep_lora = gr.Checkbox(label="Use Lowstep LoRA", value=False)
use_random_seed = gr.Checkbox(label="Use Random Seed", value=True)
seed = gr.Number(label="Seed", value=0, precision=0)
sampler = gr.Dropdown(label="Sampler", choices=list(samplers.keys()), value="Euler a")
clip_skip = gr.Slider(1, 4, 2, step=1, label="Clip skip")
with gr.Accordion("Captioner and Enhancers", open=False):
input_image = gr.Image(label="Input Image for Florence-2 Captioner")
use_florence2 = gr.Checkbox(label="Use Florence-2 Captioner", value=False)
use_medium_enhancer = gr.Checkbox(label="Use Medium Prompt Enhancer", value=False)
use_long_enhancer = gr.Checkbox(label="Use Long Prompt Enhancer", value=False)
with gr.Accordion("Upscaler Settings", open=False):
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
upscale_factor = gr.Radio(label="Upscale Factor", choices=[2, 4], value=2)
generate_btn = gr.Button("Generate Image")
with gr.Accordion("Prefix and Suffix Settings", open=True):
use_positive_prefix = gr.Checkbox(
label="Use Positive Prefix",
value=True,
info=f"Prefix: {DEFAULT_POSITIVE_PREFIX}"
)
use_positive_suffix = gr.Checkbox(
label="Use Positive Suffix",
value=True,
info=f"Suffix: {DEFAULT_POSITIVE_SUFFIX}"
)
use_negative_prefix = gr.Checkbox(
label="Use Negative Prefix",
value=True,
info=f"Prefix: {DEFAULT_NEGATIVE_PREFIX}"
)
use_negative_suffix = gr.Checkbox(
label="Use Negative Suffix",
value=True,
info=f"Suffix: {DEFAULT_NEGATIVE_SUFFIX}"
)
with gr.Column(scale=1):
output_gallery = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
seed_used = gr.Number(label="Seed Used")
full_positive_prompt_used = gr.Textbox(label="Full Positive Prompt Used")
full_negative_prompt_used = gr.Textbox(label="Full Negative Prompt Used")
generate_btn.click(
fn=generate_image,
inputs=[
model_choice, # Add this new input
positive_prompt, negative_prompt, height, width, num_inference_steps,
guidance_scale, pag_scale, pag_layers, num_images_per_prompt, use_lowstep_lora, use_random_seed, seed, sampler,
clip_skip, use_florence2, use_medium_enhancer, use_long_enhancer,
use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix,
use_upscaler, upscale_factor,
input_image
],
outputs=[output_gallery, seed_used, full_positive_prompt_used, full_negative_prompt_used]
)
demo.launch(debug=True) |