Spaces:
Runtime error
Runtime error
#! /usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# File : functional.py | |
# Author : Jiayuan Mao, Tete Xiao | |
# Email : [email protected], [email protected] | |
# Date : 07/13/2018 | |
# | |
# This file is part of PreciseRoIPooling. | |
# Distributed under terms of the MIT license. | |
# Copyright (c) 2017 Megvii Technology Limited. | |
import torch | |
import torch.autograd as ag | |
try: | |
from os.path import join as pjoin, dirname | |
from torch.utils.cpp_extension import load as load_extension | |
root_dir = pjoin(dirname(__file__), 'src') | |
_prroi_pooling = load_extension( | |
'_prroi_pooling', | |
[pjoin(root_dir, 'prroi_pooling_gpu.c'), pjoin(root_dir, 'prroi_pooling_gpu_impl.cu')], | |
verbose=False | |
) | |
except ImportError: | |
raise ImportError('Can not compile Precise RoI Pooling library.') | |
__all__ = ['prroi_pool2d'] | |
class PrRoIPool2DFunction(ag.Function): | |
def forward(ctx, features, rois, pooled_height, pooled_width, spatial_scale): | |
assert 'FloatTensor' in features.type() and 'FloatTensor' in rois.type(), \ | |
'Precise RoI Pooling only takes float input, got {} for features and {} for rois.'.format(features.type(), rois.type()) | |
pooled_height = int(pooled_height) | |
pooled_width = int(pooled_width) | |
spatial_scale = float(spatial_scale) | |
features = features.contiguous() | |
rois = rois.contiguous() | |
params = (pooled_height, pooled_width, spatial_scale) | |
if features.is_cuda: | |
output = _prroi_pooling.prroi_pooling_forward_cuda(features, rois, *params) | |
ctx.params = params | |
# everything here is contiguous. | |
ctx.save_for_backward(features, rois, output) | |
else: | |
raise NotImplementedError('Precise RoI Pooling only supports GPU (cuda) implememtations.') | |
return output | |
def backward(ctx, grad_output): | |
features, rois, output = ctx.saved_tensors | |
grad_input = grad_coor = None | |
if features.requires_grad: | |
grad_output = grad_output.contiguous() | |
grad_input = _prroi_pooling.prroi_pooling_backward_cuda(features, rois, output, grad_output, *ctx.params) | |
if rois.requires_grad: | |
grad_output = grad_output.contiguous() | |
grad_coor = _prroi_pooling.prroi_pooling_coor_backward_cuda(features, rois, output, grad_output, *ctx.params) | |
return grad_input, grad_coor, None, None, None | |
prroi_pool2d = PrRoIPool2DFunction.apply | |