File size: 35,699 Bytes
e331e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
import gradio as gr
import requests
import logging
import os
import json
import shutil
import glob
import queue
import lancedb
from datetime import datetime
from dotenv import load_dotenv, set_key
import yaml
import pandas as pd
from typing import List, Optional
from pydantic import BaseModel

# Set up logging
log_queue = queue.Queue()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

load_dotenv('indexing/.env')

API_BASE_URL = os.getenv('API_BASE_URL', 'http://localhost:8012')
LLM_API_BASE = os.getenv('LLM_API_BASE', 'http://localhost:11434')
EMBEDDINGS_API_BASE = os.getenv('EMBEDDINGS_API_BASE', 'http://localhost:11434')
ROOT_DIR = os.getenv('ROOT_DIR', 'indexing')  

# Data models
class IndexingRequest(BaseModel):
    llm_model: str
    embed_model: str
    llm_api_base: str
    embed_api_base: str
    root: str
    verbose: bool = False
    nocache: bool = False
    resume: Optional[str] = None
    reporter: str = "rich"
    emit: List[str] = ["parquet"]
    custom_args: Optional[str] = None

class PromptTuneRequest(BaseModel):
    root: str = "./{ROOT_DIR}"
    domain: Optional[str] = None
    method: str = "random"
    limit: int = 15
    language: Optional[str] = None
    max_tokens: int = 2000
    chunk_size: int = 200
    no_entity_types: bool = False
    output: str = "./{ROOT_DIR}/prompts"

class QueueHandler(logging.Handler):
    def __init__(self, log_queue):
        super().__init__()
        self.log_queue = log_queue

    def emit(self, record):
        self.log_queue.put(self.format(record))
queue_handler = QueueHandler(log_queue)
logging.getLogger().addHandler(queue_handler)


def update_logs():
    logs = []
    while not log_queue.empty():
        logs.append(log_queue.get())
    return "\n".join(logs)

##########SETTINGS################
def load_settings():
    config_path = os.getenv('GRAPHRAG_CONFIG', 'config.yaml')
    if os.path.exists(config_path):
        with open(config_path, 'r') as config_file:
            config = yaml.safe_load(config_file)
    else:
        config = {}

    settings = {
        'llm_model': os.getenv('LLM_MODEL', config.get('llm_model')),
        'embedding_model': os.getenv('EMBEDDINGS_MODEL', config.get('embedding_model')),
        'community_level': int(os.getenv('COMMUNITY_LEVEL', config.get('community_level', 2))),
        'token_limit': int(os.getenv('TOKEN_LIMIT', config.get('token_limit', 4096))),
        'api_key': os.getenv('GRAPHRAG_API_KEY', config.get('api_key')),
        'api_base': os.getenv('LLM_API_BASE', config.get('api_base')),
        'embeddings_api_base': os.getenv('EMBEDDINGS_API_BASE', config.get('embeddings_api_base')),
        'api_type': os.getenv('API_TYPE', config.get('api_type', 'openai')),
    }

    return settings


#######FILE_MANAGEMENT##############
def list_output_files(root_dir):
    output_dir = os.path.join(root_dir, "output")
    files = []
    for root, _, filenames in os.walk(output_dir):
        for filename in filenames:
            files.append(os.path.join(root, filename))
    return files

def update_file_list():
    files = list_input_files()
    return gr.update(choices=[f["path"] for f in files])

def update_file_content(file_path):
    if not file_path:
        return ""
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            content = file.read()
        return content
    except Exception as e:
        logging.error(f"Error reading file: {str(e)}")
        return f"Error reading file: {str(e)}"

def list_output_folders():
    output_dir = os.path.join(ROOT_DIR, "output")
    folders = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f))]
    return sorted(folders, reverse=True)

def update_output_folder_list():
    folders = list_output_folders()
    return gr.update(choices=folders, value=folders[0] if folders else None)

def list_folder_contents(folder_name):
    folder_path = os.path.join(ROOT_DIR, "output", folder_name, "artifacts")
    contents = []
    if os.path.exists(folder_path):
        for item in os.listdir(folder_path):
            item_path = os.path.join(folder_path, item)
            if os.path.isdir(item_path):
                contents.append(f"[DIR] {item}")
            else:
                _, ext = os.path.splitext(item)
                contents.append(f"[{ext[1:].upper()}] {item}")
    return contents

def update_folder_content_list(folder_name):
    if isinstance(folder_name, list) and folder_name:
        folder_name = folder_name[0]  
    elif not folder_name:
        return gr.update(choices=[])  
    
    contents = list_folder_contents(folder_name)
    return gr.update(choices=contents)

def handle_content_selection(folder_name, selected_item):
    if isinstance(selected_item, list) and selected_item:
        selected_item = selected_item[0]  # Take the first item if it's a list
    
    if isinstance(selected_item, str) and selected_item.startswith("[DIR]"):
        dir_name = selected_item[6:]  # Remove "[DIR] " prefix
        sub_contents = list_folder_contents(os.path.join(ROOT_DIR, "output", folder_name, dir_name))
        return gr.update(choices=sub_contents), "", ""
    elif isinstance(selected_item, str):
        file_name = selected_item.split("] ")[1] if "]" in selected_item else selected_item  # Remove file type prefix if present
        file_path = os.path.join(ROOT_DIR, "output", folder_name, "artifacts", file_name)
        file_size = os.path.getsize(file_path)
        file_type = os.path.splitext(file_name)[1]
        file_info = f"File: {file_name}\nSize: {file_size} bytes\nType: {file_type}"
        content = read_file_content(file_path)
        return gr.update(), file_info, content
    else:
        return gr.update(), "", ""

def initialize_selected_folder(folder_name):
    if not folder_name:
        return "Please select a folder first.", gr.update(choices=[])
    folder_path = os.path.join(ROOT_DIR, "output", folder_name, "artifacts")
    if not os.path.exists(folder_path):
        return f"Artifacts folder not found in '{folder_name}'.", gr.update(choices=[])
    contents = list_folder_contents(folder_path)
    return f"Folder '{folder_name}/artifacts' initialized with {len(contents)} items.", gr.update(choices=contents)

def upload_file(file):
    if file is not None:
        input_dir = os.path.join(ROOT_DIR, 'input')
        os.makedirs(input_dir, exist_ok=True)
        
        # Get the original filename from the uploaded file
        original_filename = file.name
        
        # Create the destination path
        destination_path = os.path.join(input_dir, os.path.basename(original_filename))
        
        # Move the uploaded file to the destination path
        shutil.move(file.name, destination_path)
        
        logging.info(f"File uploaded and moved to: {destination_path}")
        status = f"File uploaded: {os.path.basename(original_filename)}"
    else:
        status = "No file uploaded"

    # Get the updated file list
    updated_file_list = [f["path"] for f in list_input_files()]
    
    return status, gr.update(choices=updated_file_list), update_logs()

def list_input_files():
    input_dir = os.path.join(ROOT_DIR, 'input')
    files = []
    if os.path.exists(input_dir):
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
    return [{"name": f, "path": os.path.join(input_dir, f)} for f in files]

def delete_file(file_path):
    try:
        os.remove(file_path)
        logging.info(f"File deleted: {file_path}")
        status = f"File deleted: {os.path.basename(file_path)}"
    except Exception as e:
        logging.error(f"Error deleting file: {str(e)}")
        status = f"Error deleting file: {str(e)}"

    # Get the updated file list
    updated_file_list = [f["path"] for f in list_input_files()]
    
    return status, gr.update(choices=updated_file_list), update_logs()

def read_file_content(file_path):
    try:
        if file_path.endswith('.parquet'):
            df = pd.read_parquet(file_path)
            
            # Get basic information about the DataFrame
            info = f"Parquet File: {os.path.basename(file_path)}\n"
            info += f"Rows: {len(df)}, Columns: {len(df.columns)}\n\n"
            info += "Column Names:\n" + "\n".join(df.columns) + "\n\n"
            
            # Display first few rows
            info += "First 5 rows:\n"
            info += df.head().to_string() + "\n\n"
            
            # Display basic statistics
            info += "Basic Statistics:\n"
            info += df.describe().to_string()
            
            return info
        else:
            with open(file_path, 'r', encoding='utf-8', errors='replace') as file:
                content = file.read()
        return content
    except Exception as e:
        logging.error(f"Error reading file: {str(e)}")
        return f"Error reading file: {str(e)}"

def save_file_content(file_path, content):
    try:
        with open(file_path, 'w') as file:
            file.write(content)
        logging.info(f"File saved: {file_path}")
        status = f"File saved: {os.path.basename(file_path)}"
    except Exception as e:
        logging.error(f"Error saving file: {str(e)}")
        status = f"Error saving file: {str(e)}"
    return status, update_logs()

def manage_data():
    db = lancedb.connect(f"{ROOT_DIR}/lancedb")
    tables = db.table_names()
    table_info = ""
    if tables:
        table = db[tables[0]]
        table_info = f"Table: {tables[0]}\nSchema: {table.schema}"
    
    input_files = list_input_files()
    
    return {
        "database_info": f"Tables: {', '.join(tables)}\n\n{table_info}",
        "input_files": input_files
    }


def find_latest_graph_file(root_dir):
    pattern = os.path.join(root_dir, "output", "*", "artifacts", "*.graphml")
    graph_files = glob.glob(pattern)
    if not graph_files:
        # If no files found, try excluding .DS_Store
        output_dir = os.path.join(root_dir, "output")
        run_dirs = [d for d in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, d)) and d != ".DS_Store"]
        if run_dirs:
            latest_run = max(run_dirs)
            pattern = os.path.join(root_dir, "output", latest_run, "artifacts", "*.graphml")
            graph_files = glob.glob(pattern)
    
    if not graph_files:
        return None
    
    # Sort files by modification time, most recent first
    latest_file = max(graph_files, key=os.path.getmtime)
    return latest_file

def find_latest_output_folder():
    root_dir =f"{ROOT_DIR}/output"
    folders = [f for f in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, f))]
    
    if not folders:
        raise ValueError("No output folders found")
    
    # Sort folders by creation time, most recent first
    sorted_folders = sorted(folders, key=lambda x: os.path.getctime(os.path.join(root_dir, x)), reverse=True)
    
    latest_folder = None
    timestamp = None
    
    for folder in sorted_folders:
        try:
            # Try to parse the folder name as a timestamp
            timestamp = datetime.strptime(folder, "%Y%m%d-%H%M%S")
            latest_folder = folder
            break
        except ValueError:
            # If the folder name is not a valid timestamp, skip it
            continue
    
    if latest_folder is None:
        raise ValueError("No valid timestamp folders found")
    
    latest_path = os.path.join(root_dir, latest_folder)
    artifacts_path = os.path.join(latest_path, "artifacts")
    
    if not os.path.exists(artifacts_path):
        raise ValueError(f"Artifacts folder not found in {latest_path}")
    
    return latest_path, latest_folder

def initialize_data():
    global entity_df, relationship_df, text_unit_df, report_df, covariate_df
    
    tables = {
        "entity_df": "create_final_nodes",
        "relationship_df": "create_final_edges",
        "text_unit_df": "create_final_text_units",
        "report_df": "create_final_reports",
        "covariate_df": "create_final_covariates"
    }
    
    timestamp = None  # Initialize timestamp to None
    
    try:
        latest_output_folder, timestamp = find_latest_output_folder()
        artifacts_folder = os.path.join(latest_output_folder, "artifacts")
        
        for df_name, file_prefix in tables.items():
            file_pattern = os.path.join(artifacts_folder, f"{file_prefix}*.parquet")
            matching_files = glob.glob(file_pattern)
            
            if matching_files:
                latest_file = max(matching_files, key=os.path.getctime)
                df = pd.read_parquet(latest_file)
                globals()[df_name] = df
                logging.info(f"Successfully loaded {df_name} from {latest_file}")
            else:
                logging.warning(f"No matching file found for {df_name} in {artifacts_folder}. Initializing as an empty DataFrame.")
                globals()[df_name] = pd.DataFrame()
    
    except Exception as e:
        logging.error(f"Error initializing data: {str(e)}")
        for df_name in tables.keys():
            globals()[df_name] = pd.DataFrame()

    return timestamp

# Call initialize_data and store the timestamp
current_timestamp = initialize_data()


###########MODELS##################
def normalize_api_base(api_base: str) -> str:
    """Normalize the API base URL by removing trailing slashes and /v1 or /api suffixes."""
    api_base = api_base.rstrip('/')
    if api_base.endswith('/v1') or api_base.endswith('/api'):
        api_base = api_base[:-3]
    return api_base

def is_ollama_api(base_url: str) -> bool:
    """Check if the given base URL is for Ollama API."""
    try:
        response = requests.get(f"{normalize_api_base(base_url)}/api/tags")
        return response.status_code == 200
    except requests.RequestException:
        return False

def get_ollama_models(base_url: str) -> List[str]:
    """Fetch available models from Ollama API."""
    try:
        response = requests.get(f"{normalize_api_base(base_url)}/api/tags")
        response.raise_for_status()
        models = response.json().get('models', [])
        return [model['name'] for model in models]
    except requests.RequestException as e:
        logger.error(f"Error fetching Ollama models: {str(e)}")
        return []

def get_openai_compatible_models(base_url: str) -> List[str]:
    """Fetch available models from OpenAI-compatible API."""
    try:
        response = requests.get(f"{normalize_api_base(base_url)}/v1/models")
        response.raise_for_status()
        models = response.json().get('data', [])
        return [model['id'] for model in models]
    except requests.RequestException as e:
        logger.error(f"Error fetching OpenAI-compatible models: {str(e)}")
        return []

def get_local_models(base_url: str) -> List[str]:
    """Get available models based on the API type."""
    if is_ollama_api(base_url):
        return get_ollama_models(base_url)
    else:
        return get_openai_compatible_models(base_url)

def get_model_params(base_url: str, model_name: str) -> dict:
    """Get model parameters for Ollama models."""
    if is_ollama_api(base_url):
        try:
            response = requests.post(f"{normalize_api_base(base_url)}/api/show", json={"name": model_name})
            response.raise_for_status()
            model_info = response.json()
            return model_info.get('parameters', {})
        except requests.RequestException as e:
            logger.error(f"Error fetching Ollama model parameters: {str(e)}")
    return {}








#########API###########
def start_indexing(request: IndexingRequest):
    url = f"{API_BASE_URL}/v1/index"
    
    try:
        response = requests.post(url, json=request.dict())
        response.raise_for_status()
        result = response.json()
        return result['message'], gr.update(interactive=False), gr.update(interactive=True)
    except requests.RequestException as e:
        logger.error(f"Error starting indexing: {str(e)}")
        return f"Error: {str(e)}", gr.update(interactive=True), gr.update(interactive=False)
    
def check_indexing_status():
    url = f"{API_BASE_URL}/v1/index_status"
    try:
        response = requests.get(url)
        response.raise_for_status()
        result = response.json()
        return result['status'], "\n".join(result['logs'])
    except requests.RequestException as e:
        logger.error(f"Error checking indexing status: {str(e)}")
        return "Error", f"Failed to check indexing status: {str(e)}"

def start_prompt_tuning(request: PromptTuneRequest):
    url = f"{API_BASE_URL}/v1/prompt_tune"
    
    try:
        response = requests.post(url, json=request.dict())
        response.raise_for_status()
        result = response.json()
        return result['message'], gr.update(interactive=False)
    except requests.RequestException as e:
        logger.error(f"Error starting prompt tuning: {str(e)}")
        return f"Error: {str(e)}", gr.update(interactive=True)

def check_prompt_tuning_status():
    url = f"{API_BASE_URL}/v1/prompt_tune_status"
    try:
        response = requests.get(url)
        response.raise_for_status()
        result = response.json()
        return result['status'], "\n".join(result['logs'])
    except requests.RequestException as e:
        logger.error(f"Error checking prompt tuning status: {str(e)}")
        return "Error", f"Failed to check prompt tuning status: {str(e)}"

def update_model_params(model_name):
    params = get_model_params(model_name)
    return gr.update(value=json.dumps(params, indent=2))









###########################
css = """
html, body {
    margin: 0;
    padding: 0;
    height: 100vh;
    overflow: hidden;
}

.gradio-container {
    margin: 0 !important;
    padding: 0 !important;
    width: 100vw !important;
    max-width: 100vw !important;
    height: 100vh !important;
    max-height: 100vh !important;
    overflow: auto;
    display: flex;
    flex-direction: column;
}

#main-container {
    flex: 1;
    display: flex;
    overflow: hidden;
}

#left-column, #right-column {
    height: 100%;
    overflow-y: auto;
    padding: 10px;
}

#left-column {
    flex: 1;
}

#right-column {
    flex: 2;
    display: flex;
    flex-direction: column;
}

#chat-container {
    flex: 0 0 auto;  /* Don't allow this to grow */
    height: 100%;
    display: flex;
    flex-direction: column;
    overflow: hidden;
    border: 1px solid var(--color-accent);
    border-radius: 8px;
    padding: 10px;
    overflow-y: auto;
}

#chatbot {
    overflow-y: hidden;
    height: 100%;
}

#chat-input-row {
    margin-top: 10px;
}

#visualization-plot {
    width: 100%;
    aspect-ratio: 1 / 1;
    max-height: 600px;  /* Adjust this value as needed */
}

#vis-controls-row {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin-top: 10px;
}

#vis-controls-row > * {
    flex: 1;
    margin: 0 5px;
}

#vis-status {
    margin-top: 10px;
}

/* Chat input styling */
#chat-input-row {
    display: flex;
    flex-direction: column;
}

#chat-input-row > div {
    width: 100% !important;
}

#chat-input-row input[type="text"] {
    width: 100% !important;
}

/* Adjust padding for all containers */
.gr-box, .gr-form, .gr-panel {
    padding: 10px !important;
}

/* Ensure all textboxes and textareas have full height */
.gr-textbox, .gr-textarea {
    height: auto !important;
    min-height: 100px !important;
}

/* Ensure all dropdowns have full width */
.gr-dropdown {
    width: 100% !important;
}

:root {
    --color-background: #2C3639;
    --color-foreground: #3F4E4F;
    --color-accent: #A27B5C;
    --color-text: #DCD7C9;
}

body, .gradio-container {
    background-color: var(--color-background);
    color: var(--color-text);
}

.gr-button {
    background-color: var(--color-accent);
    color: var(--color-text);
}

.gr-input, .gr-textarea, .gr-dropdown {
    background-color: var(--color-foreground);
    color: var(--color-text);
    border: 1px solid var(--color-accent);
}

.gr-panel {
    background-color: var(--color-foreground);
    border: 1px solid var(--color-accent);
}

.gr-box {
    border-radius: 8px;
    margin-bottom: 10px;
    background-color: var(--color-foreground);
}

.gr-padded {
    padding: 10px;
}

.gr-form {
    background-color: var(--color-foreground);
}

.gr-input-label, .gr-radio-label {
    color: var(--color-text);
}

.gr-checkbox-label {
    color: var(--color-text);
}

.gr-markdown {
    color: var(--color-text);
}

.gr-accordion {
    background-color: var(--color-foreground);
    border: 1px solid var(--color-accent);
}

.gr-accordion-header {
    background-color: var(--color-accent);
    color: var(--color-text);
}

#visualization-container {
    display: flex;
    flex-direction: column;
    border: 2px solid var(--color-accent);
    border-radius: 8px;
    margin-top: 20px;
    padding: 10px;
    background-color: var(--color-foreground);
    height: calc(100vh - 300px);  /* Adjust this value as needed */
}

#visualization-plot {
    width: 100%;
    height: 100%;
}

#vis-controls-row {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin-top: 10px;
}

#vis-controls-row > * {
    flex: 1;
    margin: 0 5px;
}

#vis-status {
    margin-top: 10px;
}

#log-container {
    background-color: var(--color-foreground);
    border: 1px solid var(--color-accent);
    border-radius: 8px;
    padding: 10px;
    margin-top: 20px;
    max-height: auto;
    overflow-y: auto;
}

.setting-accordion .label-wrap {
    cursor: pointer;
}

.setting-accordion .icon {
    transition: transform 0.3s ease;
}

.setting-accordion[open] .icon {
    transform: rotate(90deg);
}

.gr-form.gr-box {
    border: none !important;
    background: none !important;
}

.model-params {
    border-top: 1px solid var(--color-accent);
    margin-top: 10px;
    padding-top: 10px;
}
"""


def create_interface():
    settings = load_settings()
    llm_api_base = normalize_api_base(settings['api_base'])
    embeddings_api_base = normalize_api_base(settings['embeddings_api_base'])

    with gr.Blocks(theme=gr.themes.Base(), css=css) as demo:
        gr.Markdown("# GraphRAG Indexer")
        
        with gr.Tabs():
            with gr.TabItem("Indexing"):
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("## Indexing Configuration")
                        
                        with gr.Row():
                            llm_name = gr.Dropdown(label="LLM Model", choices=[], value=settings['llm_model'], allow_custom_value=True)
                            refresh_llm_btn = gr.Button("πŸ”„", size='sm', scale=0)
                        
                        with gr.Row():
                            embed_name = gr.Dropdown(label="Embedding Model", choices=[], value=settings['embedding_model'], allow_custom_value=True)
                            refresh_embed_btn = gr.Button("πŸ”„", size='sm', scale=0)
                        
                        save_config_button = gr.Button("Save Configuration", variant="primary")
                        config_status = gr.Textbox(label="Configuration Status", lines=2)
                        
                        with gr.Row():
                                with gr.Column(scale=1):
                                    root_dir = gr.Textbox(label="Root Directory (Edit in .env file)", value=f"{ROOT_DIR}")      
                        with gr.Group():                                                         
                            verbose = gr.Checkbox(label="Verbose", interactive=True, value=True)
                            nocache = gr.Checkbox(label="No Cache", interactive=True, value=True)
                        
                        with gr.Accordion("Advanced Options", open=True):
                            resume = gr.Textbox(label="Resume Timestamp (optional)")
                            reporter = gr.Dropdown(
                                label="Reporter",
                                choices=["rich", "print", "none"],
                                value="rich",
                                interactive=True
                            )
                            emit_formats = gr.CheckboxGroup(
                                label="Emit Formats",
                                choices=["json", "csv", "parquet"],
                                value=["parquet"],
                                interactive=True
                            )
                            custom_args = gr.Textbox(label="Custom CLI Arguments", placeholder="--arg1 value1 --arg2 value2")
                    
                    with gr.Column(scale=1):
                        gr.Markdown("## Indexing Output")
                        index_output = gr.Textbox(label="Output", lines=10)
                        index_status = gr.Textbox(label="Status", lines=2)
                        
                        run_index_button = gr.Button("Run Indexing", variant="primary")
                        check_status_button = gr.Button("Check Indexing Status")


            with gr.TabItem("Prompt Tuning"):
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.Markdown("## Prompt Tuning Configuration")
                        
                        pt_root = gr.Textbox(label="Root Directory", value=f"{ROOT_DIR}", interactive=True)
                        pt_domain = gr.Textbox(label="Domain (optional)")
                        pt_method = gr.Dropdown(
                            label="Method",
                            choices=["random", "top", "all"],
                            value="random",
                            interactive=True
                        )
                        pt_limit = gr.Number(label="Limit", value=15, precision=0, interactive=True)
                        pt_language = gr.Textbox(label="Language (optional)")
                        pt_max_tokens = gr.Number(label="Max Tokens", value=2000, precision=0, interactive=True)
                        pt_chunk_size = gr.Number(label="Chunk Size", value=200, precision=0, interactive=True)
                        pt_no_entity_types = gr.Checkbox(label="No Entity Types", value=False)
                        pt_output_dir = gr.Textbox(label="Output Directory", value=f"{ROOT_DIR}/prompts", interactive=True)
                        save_pt_config_button = gr.Button("Save Prompt Tuning Configuration", variant="primary")
                        
                    with gr.Column(scale=1):
                        gr.Markdown("## Prompt Tuning Output")
                        pt_output = gr.Textbox(label="Output", lines=10)
                        pt_status = gr.Textbox(label="Status", lines=10)
                        
                        run_pt_button = gr.Button("Run Prompt Tuning", variant="primary")
                        check_pt_status_button = gr.Button("Check Prompt Tuning Status")

            with gr.TabItem("Data Management"):
                with gr.Row():
                    with gr.Column(scale=1):
                        with gr.Accordion("File Upload", open=True):
                            file_upload = gr.File(label="Upload File", file_types=[".txt", ".csv", ".parquet"])
                            upload_btn = gr.Button("Upload File", variant="primary")
                            upload_output = gr.Textbox(label="Upload Status", visible=True)
                        
                        with gr.Accordion("File Management", open=True):
                            file_list = gr.Dropdown(label="Select File", choices=[], interactive=True)
                            refresh_btn = gr.Button("Refresh File List", variant="secondary")
                            
                            file_content = gr.TextArea(label="File Content", lines=10)
                            
                            with gr.Row():
                                delete_btn = gr.Button("Delete Selected File", variant="stop")
                                save_btn = gr.Button("Save Changes", variant="primary")
                            
                            operation_status = gr.Textbox(label="Operation Status", visible=True)
                    
                    with gr.Column(scale=1):
                        with gr.Accordion("Output Folders", open=True):
                            output_folder_list = gr.Dropdown(label="Select Output Folder", choices=[], interactive=True)
                            refresh_output_btn = gr.Button("Refresh Output Folders", variant="secondary")
                            folder_content_list = gr.Dropdown(label="Folder Contents", choices=[], interactive=True, multiselect=False)
                            
                            file_info = gr.Textbox(label="File Info", lines=3)
                            output_content = gr.TextArea(label="File Content", lines=10)

                        

        # Event handlers
        def refresh_llm_models():
            models = get_local_models(llm_api_base)
            return gr.update(choices=models)

        def refresh_embed_models():
            models = get_local_models(embeddings_api_base)
            return gr.update(choices=models)

        refresh_llm_btn.click(
            refresh_llm_models,
            outputs=[llm_name]
        )

        refresh_embed_btn.click(
            refresh_embed_models,
            outputs=[embed_name]
        )

        # Initialize model lists on page load
        demo.load(refresh_llm_models, outputs=[llm_name])
        demo.load(refresh_embed_models, outputs=[embed_name])

        def create_indexing_request():
            return IndexingRequest(
                llm_model=llm_name.value,
                embed_model=embed_name.value,
                llm_api_base=llm_api_base,
                embed_api_base=embeddings_api_base,
                root=root_dir.value,
                verbose=verbose.value,
                nocache=nocache.value,
                resume=resume.value if resume.value else None,
                reporter=reporter.value,
                emit=[fmt for fmt in emit_formats.value],
                custom_args=custom_args.value if custom_args.value else None
            )

        run_index_button.click(
            lambda: start_indexing(create_indexing_request()),
            outputs=[index_output, run_index_button, check_status_button]
        )

        check_status_button.click(
            check_indexing_status,
            outputs=[index_status, index_output]
        )

        def create_prompt_tune_request():
            return PromptTuneRequest(
                root=pt_root.value,
                domain=pt_domain.value if pt_domain.value else None,
                method=pt_method.value,
                limit=int(pt_limit.value),
                language=pt_language.value if pt_language.value else None,
                max_tokens=int(pt_max_tokens.value),
                chunk_size=int(pt_chunk_size.value),
                no_entity_types=pt_no_entity_types.value,
                output=pt_output_dir.value
            )

        def update_pt_output(request):
            result, button_update = start_prompt_tuning(request)
            return result, button_update, gr.update(value=f"Request: {request.dict()}")

        run_pt_button.click(
            lambda: update_pt_output(create_prompt_tune_request()),
            outputs=[pt_output, run_pt_button, pt_status]
        )

        check_pt_status_button.click(
            check_prompt_tuning_status,
            outputs=[pt_status, pt_output]
        )

        # Add event handlers for real-time updates
        pt_root.change(lambda x: gr.update(value=f"Root Directory changed to: {x}"), inputs=[pt_root], outputs=[pt_status])
        pt_limit.change(lambda x: gr.update(value=f"Limit changed to: {x}"), inputs=[pt_limit], outputs=[pt_status])
        pt_max_tokens.change(lambda x: gr.update(value=f"Max Tokens changed to: {x}"), inputs=[pt_max_tokens], outputs=[pt_status])
        pt_chunk_size.change(lambda x: gr.update(value=f"Chunk Size changed to: {x}"), inputs=[pt_chunk_size], outputs=[pt_status])
        pt_output_dir.change(lambda x: gr.update(value=f"Output Directory changed to: {x}"), inputs=[pt_output_dir], outputs=[pt_status])

        # Event handlers for Data Management
        upload_btn.click(
            upload_file,
            inputs=[file_upload],
            outputs=[upload_output, file_list, operation_status]
        )

        refresh_btn.click(
            update_file_list,
            outputs=[file_list]
        )

        refresh_output_btn.click(
            update_output_folder_list,
            outputs=[output_folder_list]
        )

        file_list.change(
            update_file_content,
            inputs=[file_list],
            outputs=[file_content]
        )

        delete_btn.click(
            delete_file,
            inputs=[file_list],
            outputs=[operation_status, file_list, operation_status]
        )

        save_btn.click(
            save_file_content,
            inputs=[file_list, file_content],
            outputs=[operation_status, operation_status]
        )

        output_folder_list.change(
            update_folder_content_list,
            inputs=[output_folder_list],
            outputs=[folder_content_list]
        )

        folder_content_list.change(
            handle_content_selection,
            inputs=[output_folder_list, folder_content_list],
            outputs=[folder_content_list, file_info, output_content]
        )

        # Event handler for saving configuration
        save_config_button.click(
            update_env_file,
            inputs=[llm_name, embed_name],
            outputs=[config_status]
        )

        # Event handler for saving prompt tuning configuration
        save_pt_config_button.click(
            save_prompt_tuning_config,
            inputs=[pt_root, pt_domain, pt_method, pt_limit, pt_language, pt_max_tokens, pt_chunk_size, pt_no_entity_types, pt_output_dir],
            outputs=[pt_status]
        )

        # Initialize file list and output folder list
        demo.load(update_file_list, outputs=[file_list])
        demo.load(update_output_folder_list, outputs=[output_folder_list])

    return demo

def update_env_file(llm_model, embed_model):
    env_path = os.path.join(ROOT_DIR, '.env')
    
    set_key(env_path, 'LLM_MODEL', llm_model)
    set_key(env_path, 'EMBEDDINGS_MODEL', embed_model)
    
    # Reload the environment variables
    load_dotenv(env_path, override=True)
    
    return f"Environment updated: LLM_MODEL={llm_model}, EMBEDDINGS_MODEL={embed_model}"

def save_prompt_tuning_config(root, domain, method, limit, language, max_tokens, chunk_size, no_entity_types, output_dir):
    config = {
        'prompt_tuning': {
            'root': root,
            'domain': domain,
            'method': method,
            'limit': limit,
            'language': language,
            'max_tokens': max_tokens,
            'chunk_size': chunk_size,
            'no_entity_types': no_entity_types,
            'output': output_dir
        }
    }
    
    config_path = os.path.join(ROOT_DIR, 'prompt_tuning_config.yaml')
    with open(config_path, 'w') as f:
        yaml.dump(config, f)
    
    return f"Prompt Tuning configuration saved to {config_path}"

demo = create_interface()

if __name__ == "__main__":
    demo.launch(server_port=7861)