shwetashweta05
commited on
Commit
•
9674445
1
Parent(s):
8cb4b32
Upload 2 files
Browse files- image_show(b,g,r).ipynb +1109 -0
- image_show(b,g,r)_in_window.ipynb +175 -0
image_show(b,g,r).ipynb
ADDED
@@ -0,0 +1,1109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "461dee1b-62d6-43fc-bbef-42db7566dcbf",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Requirement already satisfied: kagglehub in c:\\users\\singh\\anaconda3\\lib\\site-packages (0.3.4)\n",
|
14 |
+
"Requirement already satisfied: packaging in c:\\users\\singh\\anaconda3\\lib\\site-packages (from kagglehub) (23.1)\n",
|
15 |
+
"Requirement already satisfied: requests in c:\\users\\singh\\anaconda3\\lib\\site-packages (from kagglehub) (2.31.0)\n",
|
16 |
+
"Requirement already satisfied: tqdm in c:\\users\\singh\\anaconda3\\lib\\site-packages (from kagglehub) (4.65.0)\n",
|
17 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\singh\\anaconda3\\lib\\site-packages (from requests->kagglehub) (2.0.4)\n",
|
18 |
+
"Requirement already satisfied: idna<4,>=2.5 in c:\\users\\singh\\anaconda3\\lib\\site-packages (from requests->kagglehub) (3.4)\n",
|
19 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\singh\\anaconda3\\lib\\site-packages (from requests->kagglehub) (2.0.7)\n",
|
20 |
+
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\singh\\anaconda3\\lib\\site-packages (from requests->kagglehub) (2024.2.2)\n",
|
21 |
+
"Requirement already satisfied: colorama in c:\\users\\singh\\anaconda3\\lib\\site-packages (from tqdm->kagglehub) (0.4.6)\n",
|
22 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
23 |
+
]
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"source": [
|
27 |
+
"pip install kagglehub"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 9,
|
33 |
+
"id": "c3c7d28b-6d74-42d4-9d78-9f964e4b77ef",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"import kagglehub"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 10,
|
43 |
+
"id": "81c6b0c6-86ba-47b5-bc64-36cb1d679f2f",
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [
|
46 |
+
{
|
47 |
+
"name": "stdout",
|
48 |
+
"output_type": "stream",
|
49 |
+
"text": [
|
50 |
+
"Warning: Looks like you're using an outdated `kagglehub` version, please consider updating (latest version: 0.3.6)\n"
|
51 |
+
]
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"source": [
|
55 |
+
"path=kagglehub.dataset_download(\"rahmasleam/flowers-dataset\")"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 11,
|
61 |
+
"id": "691fb5cf-aeb1-4fe1-ac65-a0de6b1a66a4",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"text/plain": [
|
67 |
+
"'C:\\\\Users\\\\Singh\\\\.cache\\\\kagglehub\\\\datasets\\\\rahmasleam\\\\flowers-dataset\\\\versions\\\\1'"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
"execution_count": 11,
|
71 |
+
"metadata": {},
|
72 |
+
"output_type": "execute_result"
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"source": [
|
76 |
+
"path"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 12,
|
82 |
+
"id": "a7bd6c4b-a1f2-49fe-9d3b-78fe019bdd27",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"import os\n",
|
87 |
+
"import cv2"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": 31,
|
93 |
+
"id": "c9b20532-6f16-424d-9c21-c5aa51b538dd",
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"folders=os.listdir(r\"C:\\Users\\Singh\\Downloads\\flower_photos\") # List all folders in the \"flower_photos\" directory."
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 32,
|
103 |
+
"id": "bcd17c4d-bb28-445b-bb20-d6c6c7e082bd",
|
104 |
+
"metadata": {},
|
105 |
+
"outputs": [
|
106 |
+
{
|
107 |
+
"data": {
|
108 |
+
"text/plain": [
|
109 |
+
"['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
"execution_count": 32,
|
113 |
+
"metadata": {},
|
114 |
+
"output_type": "execute_result"
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"source": [
|
118 |
+
"folders"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 33,
|
124 |
+
"id": "a8bb7124-8d25-4ab2-b9f7-efc04eda887f",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"features=[]\n",
|
129 |
+
"class_labels=[]\n",
|
130 |
+
"for folder in folders:\n",
|
131 |
+
" for images in os.listdir(r\"C:\\Users\\Singh\\Downloads\\flower_photos\\{}\".format(folder)):\n",
|
132 |
+
" img=cv2.imread(r\"C:\\Users\\Singh\\Downloads\\flower_photos\\{}\\{}\".format(folder,images),0)# array repress\n",
|
133 |
+
" img=cv2.resize(img,(50,50))#resizing the image\n",
|
134 |
+
" img=img.flatten()#flattening the image\n",
|
135 |
+
" features.append(img)# appending each flatten image in list\n",
|
136 |
+
" class_labels.append(folder)#appending each class label to list"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": 34,
|
142 |
+
"id": "cc21daf6-98bc-4c23-aff3-c25f66b559c4",
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [
|
145 |
+
{
|
146 |
+
"data": {
|
147 |
+
"text/plain": [
|
148 |
+
"633"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
"execution_count": 34,
|
152 |
+
"metadata": {},
|
153 |
+
"output_type": "execute_result"
|
154 |
+
}
|
155 |
+
],
|
156 |
+
"source": [
|
157 |
+
"len(os.listdir(r\"C:\\Users\\Singh\\Downloads\\flower_photos\\daisy\")) # Count the number of images in the \"daisy\" folder inside \"flower_photos.\""
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": 35,
|
163 |
+
"id": "cfe72f36-3a96-43ef-a7c8-68b9fa5a5ef5",
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [],
|
166 |
+
"source": [
|
167 |
+
"img1=cv2.imread(r\"C:\\Users\\Singh\\Downloads\\flower_photos\\daisy\\5547758_eea9edfd54_n.jpg\",0) # Load an image from the \"daisy\" folder in grayscale mode (0 indicates grayscale)."
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 36,
|
173 |
+
"id": "72e3d4b8-dd96-432a-a88a-48edccb7d999",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [
|
176 |
+
{
|
177 |
+
"data": {
|
178 |
+
"text/plain": [
|
179 |
+
"array([[112, 106, 102, ..., 48, 50, 52],\n",
|
180 |
+
" [128, 121, 117, ..., 49, 50, 52],\n",
|
181 |
+
" [136, 129, 124, ..., 51, 51, 53],\n",
|
182 |
+
" ...,\n",
|
183 |
+
" [250, 251, 252, ..., 21, 20, 19],\n",
|
184 |
+
" [248, 250, 250, ..., 23, 22, 21],\n",
|
185 |
+
" [251, 252, 249, ..., 25, 25, 24]], dtype=uint8)"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
"execution_count": 36,
|
189 |
+
"metadata": {},
|
190 |
+
"output_type": "execute_result"
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"source": [
|
194 |
+
"img1"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": 37,
|
200 |
+
"id": "261e6f19-30bc-4e15-9134-3debdcb235f8",
|
201 |
+
"metadata": {},
|
202 |
+
"outputs": [
|
203 |
+
{
|
204 |
+
"data": {
|
205 |
+
"text/plain": [
|
206 |
+
"(232, 320)"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
"execution_count": 37,
|
210 |
+
"metadata": {},
|
211 |
+
"output_type": "execute_result"
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"source": [
|
215 |
+
"img1.shape # Get the shape (dimensions) of the grayscale image."
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 38,
|
221 |
+
"id": "9227807f-3552-472e-90c1-7ff1a68c07cc",
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"data": {
|
226 |
+
"text/plain": [
|
227 |
+
"3670"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
"execution_count": 38,
|
231 |
+
"metadata": {},
|
232 |
+
"output_type": "execute_result"
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"source": [
|
236 |
+
"len(features) # Get the number of features collected so far (assuming `features` is a list or similar)."
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 39,
|
242 |
+
"id": "13569c16-3939-4617-bbe8-e69f153cb2fa",
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [
|
245 |
+
{
|
246 |
+
"data": {
|
247 |
+
"text/plain": [
|
248 |
+
"3670"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
"execution_count": 39,
|
252 |
+
"metadata": {},
|
253 |
+
"output_type": "execute_result"
|
254 |
+
}
|
255 |
+
],
|
256 |
+
"source": [
|
257 |
+
"len(class_labels) # Get the number of class labels collected so far (assuming `class_labels` is a list or similar)."
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": 42,
|
263 |
+
"id": "3615aff7-79ad-472f-86f6-2dbb19db6c87",
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [],
|
266 |
+
"source": [
|
267 |
+
"import pandas as pd"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 43,
|
273 |
+
"id": "526870d5-168a-4dff-b8e1-dbf509ad5cf2",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"final_data=pd.DataFrame(features) # Convert the `features` list or array into a pandas DataFrame."
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"execution_count": 44,
|
283 |
+
"id": "01fb54b7-cbe8-43e6-81e7-40247b42d522",
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [
|
286 |
+
{
|
287 |
+
"data": {
|
288 |
+
"text/plain": [
|
289 |
+
"(3670, 2500)"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
"execution_count": 44,
|
293 |
+
"metadata": {},
|
294 |
+
"output_type": "execute_result"
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"source": [
|
298 |
+
"final_data.shape"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"execution_count": 45,
|
304 |
+
"id": "4b914cdc-da32-4e76-bc5f-41f1899d6320",
|
305 |
+
"metadata": {},
|
306 |
+
"outputs": [],
|
307 |
+
"source": [
|
308 |
+
"import numpy as np"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"execution_count": 46,
|
314 |
+
"id": "c8a7ad09-21d0-47c4-b553-00e95bdfc8b3",
|
315 |
+
"metadata": {},
|
316 |
+
"outputs": [],
|
317 |
+
"source": [
|
318 |
+
"final_data=final_data.astype(np.uint8) # Convert all data in the DataFrame to `uint8` data type for storage efficiency."
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "code",
|
323 |
+
"execution_count": 47,
|
324 |
+
"id": "41441478-1e01-4799-aa77-ca3c51c6be91",
|
325 |
+
"metadata": {},
|
326 |
+
"outputs": [
|
327 |
+
{
|
328 |
+
"data": {
|
329 |
+
"text/html": [
|
330 |
+
"<div>\n",
|
331 |
+
"<style scoped>\n",
|
332 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
333 |
+
" vertical-align: middle;\n",
|
334 |
+
" }\n",
|
335 |
+
"\n",
|
336 |
+
" .dataframe tbody tr th {\n",
|
337 |
+
" vertical-align: top;\n",
|
338 |
+
" }\n",
|
339 |
+
"\n",
|
340 |
+
" .dataframe thead th {\n",
|
341 |
+
" text-align: right;\n",
|
342 |
+
" }\n",
|
343 |
+
"</style>\n",
|
344 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
345 |
+
" <thead>\n",
|
346 |
+
" <tr style=\"text-align: right;\">\n",
|
347 |
+
" <th></th>\n",
|
348 |
+
" <th>0</th>\n",
|
349 |
+
" <th>1</th>\n",
|
350 |
+
" <th>2</th>\n",
|
351 |
+
" <th>3</th>\n",
|
352 |
+
" <th>4</th>\n",
|
353 |
+
" <th>5</th>\n",
|
354 |
+
" <th>6</th>\n",
|
355 |
+
" <th>7</th>\n",
|
356 |
+
" <th>8</th>\n",
|
357 |
+
" <th>9</th>\n",
|
358 |
+
" <th>...</th>\n",
|
359 |
+
" <th>2490</th>\n",
|
360 |
+
" <th>2491</th>\n",
|
361 |
+
" <th>2492</th>\n",
|
362 |
+
" <th>2493</th>\n",
|
363 |
+
" <th>2494</th>\n",
|
364 |
+
" <th>2495</th>\n",
|
365 |
+
" <th>2496</th>\n",
|
366 |
+
" <th>2497</th>\n",
|
367 |
+
" <th>2498</th>\n",
|
368 |
+
" <th>2499</th>\n",
|
369 |
+
" </tr>\n",
|
370 |
+
" </thead>\n",
|
371 |
+
" <tbody>\n",
|
372 |
+
" <tr>\n",
|
373 |
+
" <th>0</th>\n",
|
374 |
+
" <td>143</td>\n",
|
375 |
+
" <td>149</td>\n",
|
376 |
+
" <td>160</td>\n",
|
377 |
+
" <td>169</td>\n",
|
378 |
+
" <td>167</td>\n",
|
379 |
+
" <td>167</td>\n",
|
380 |
+
" <td>145</td>\n",
|
381 |
+
" <td>144</td>\n",
|
382 |
+
" <td>144</td>\n",
|
383 |
+
" <td>159</td>\n",
|
384 |
+
" <td>...</td>\n",
|
385 |
+
" <td>171</td>\n",
|
386 |
+
" <td>174</td>\n",
|
387 |
+
" <td>168</td>\n",
|
388 |
+
" <td>149</td>\n",
|
389 |
+
" <td>134</td>\n",
|
390 |
+
" <td>128</td>\n",
|
391 |
+
" <td>137</td>\n",
|
392 |
+
" <td>137</td>\n",
|
393 |
+
" <td>131</td>\n",
|
394 |
+
" <td>127</td>\n",
|
395 |
+
" </tr>\n",
|
396 |
+
" <tr>\n",
|
397 |
+
" <th>1</th>\n",
|
398 |
+
" <td>224</td>\n",
|
399 |
+
" <td>222</td>\n",
|
400 |
+
" <td>216</td>\n",
|
401 |
+
" <td>232</td>\n",
|
402 |
+
" <td>228</td>\n",
|
403 |
+
" <td>75</td>\n",
|
404 |
+
" <td>85</td>\n",
|
405 |
+
" <td>80</td>\n",
|
406 |
+
" <td>182</td>\n",
|
407 |
+
" <td>185</td>\n",
|
408 |
+
" <td>...</td>\n",
|
409 |
+
" <td>120</td>\n",
|
410 |
+
" <td>116</td>\n",
|
411 |
+
" <td>107</td>\n",
|
412 |
+
" <td>110</td>\n",
|
413 |
+
" <td>108</td>\n",
|
414 |
+
" <td>156</td>\n",
|
415 |
+
" <td>169</td>\n",
|
416 |
+
" <td>141</td>\n",
|
417 |
+
" <td>125</td>\n",
|
418 |
+
" <td>172</td>\n",
|
419 |
+
" </tr>\n",
|
420 |
+
" <tr>\n",
|
421 |
+
" <th>2</th>\n",
|
422 |
+
" <td>108</td>\n",
|
423 |
+
" <td>81</td>\n",
|
424 |
+
" <td>97</td>\n",
|
425 |
+
" <td>84</td>\n",
|
426 |
+
" <td>102</td>\n",
|
427 |
+
" <td>120</td>\n",
|
428 |
+
" <td>108</td>\n",
|
429 |
+
" <td>106</td>\n",
|
430 |
+
" <td>140</td>\n",
|
431 |
+
" <td>128</td>\n",
|
432 |
+
" <td>...</td>\n",
|
433 |
+
" <td>38</td>\n",
|
434 |
+
" <td>44</td>\n",
|
435 |
+
" <td>27</td>\n",
|
436 |
+
" <td>26</td>\n",
|
437 |
+
" <td>26</td>\n",
|
438 |
+
" <td>27</td>\n",
|
439 |
+
" <td>27</td>\n",
|
440 |
+
" <td>31</td>\n",
|
441 |
+
" <td>36</td>\n",
|
442 |
+
" <td>40</td>\n",
|
443 |
+
" </tr>\n",
|
444 |
+
" <tr>\n",
|
445 |
+
" <th>3</th>\n",
|
446 |
+
" <td>26</td>\n",
|
447 |
+
" <td>25</td>\n",
|
448 |
+
" <td>26</td>\n",
|
449 |
+
" <td>29</td>\n",
|
450 |
+
" <td>32</td>\n",
|
451 |
+
" <td>35</td>\n",
|
452 |
+
" <td>37</td>\n",
|
453 |
+
" <td>38</td>\n",
|
454 |
+
" <td>38</td>\n",
|
455 |
+
" <td>40</td>\n",
|
456 |
+
" <td>...</td>\n",
|
457 |
+
" <td>18</td>\n",
|
458 |
+
" <td>16</td>\n",
|
459 |
+
" <td>15</td>\n",
|
460 |
+
" <td>16</td>\n",
|
461 |
+
" <td>21</td>\n",
|
462 |
+
" <td>18</td>\n",
|
463 |
+
" <td>24</td>\n",
|
464 |
+
" <td>16</td>\n",
|
465 |
+
" <td>20</td>\n",
|
466 |
+
" <td>23</td>\n",
|
467 |
+
" </tr>\n",
|
468 |
+
" <tr>\n",
|
469 |
+
" <th>4</th>\n",
|
470 |
+
" <td>20</td>\n",
|
471 |
+
" <td>21</td>\n",
|
472 |
+
" <td>36</td>\n",
|
473 |
+
" <td>45</td>\n",
|
474 |
+
" <td>46</td>\n",
|
475 |
+
" <td>45</td>\n",
|
476 |
+
" <td>40</td>\n",
|
477 |
+
" <td>42</td>\n",
|
478 |
+
" <td>37</td>\n",
|
479 |
+
" <td>56</td>\n",
|
480 |
+
" <td>...</td>\n",
|
481 |
+
" <td>26</td>\n",
|
482 |
+
" <td>42</td>\n",
|
483 |
+
" <td>48</td>\n",
|
484 |
+
" <td>42</td>\n",
|
485 |
+
" <td>26</td>\n",
|
486 |
+
" <td>25</td>\n",
|
487 |
+
" <td>31</td>\n",
|
488 |
+
" <td>39</td>\n",
|
489 |
+
" <td>27</td>\n",
|
490 |
+
" <td>35</td>\n",
|
491 |
+
" </tr>\n",
|
492 |
+
" <tr>\n",
|
493 |
+
" <th>...</th>\n",
|
494 |
+
" <td>...</td>\n",
|
495 |
+
" <td>...</td>\n",
|
496 |
+
" <td>...</td>\n",
|
497 |
+
" <td>...</td>\n",
|
498 |
+
" <td>...</td>\n",
|
499 |
+
" <td>...</td>\n",
|
500 |
+
" <td>...</td>\n",
|
501 |
+
" <td>...</td>\n",
|
502 |
+
" <td>...</td>\n",
|
503 |
+
" <td>...</td>\n",
|
504 |
+
" <td>...</td>\n",
|
505 |
+
" <td>...</td>\n",
|
506 |
+
" <td>...</td>\n",
|
507 |
+
" <td>...</td>\n",
|
508 |
+
" <td>...</td>\n",
|
509 |
+
" <td>...</td>\n",
|
510 |
+
" <td>...</td>\n",
|
511 |
+
" <td>...</td>\n",
|
512 |
+
" <td>...</td>\n",
|
513 |
+
" <td>...</td>\n",
|
514 |
+
" <td>...</td>\n",
|
515 |
+
" </tr>\n",
|
516 |
+
" <tr>\n",
|
517 |
+
" <th>3665</th>\n",
|
518 |
+
" <td>212</td>\n",
|
519 |
+
" <td>189</td>\n",
|
520 |
+
" <td>186</td>\n",
|
521 |
+
" <td>212</td>\n",
|
522 |
+
" <td>47</td>\n",
|
523 |
+
" <td>82</td>\n",
|
524 |
+
" <td>116</td>\n",
|
525 |
+
" <td>131</td>\n",
|
526 |
+
" <td>82</td>\n",
|
527 |
+
" <td>79</td>\n",
|
528 |
+
" <td>...</td>\n",
|
529 |
+
" <td>83</td>\n",
|
530 |
+
" <td>103</td>\n",
|
531 |
+
" <td>114</td>\n",
|
532 |
+
" <td>40</td>\n",
|
533 |
+
" <td>7</td>\n",
|
534 |
+
" <td>30</td>\n",
|
535 |
+
" <td>30</td>\n",
|
536 |
+
" <td>86</td>\n",
|
537 |
+
" <td>194</td>\n",
|
538 |
+
" <td>215</td>\n",
|
539 |
+
" </tr>\n",
|
540 |
+
" <tr>\n",
|
541 |
+
" <th>3666</th>\n",
|
542 |
+
" <td>135</td>\n",
|
543 |
+
" <td>126</td>\n",
|
544 |
+
" <td>129</td>\n",
|
545 |
+
" <td>131</td>\n",
|
546 |
+
" <td>119</td>\n",
|
547 |
+
" <td>141</td>\n",
|
548 |
+
" <td>135</td>\n",
|
549 |
+
" <td>128</td>\n",
|
550 |
+
" <td>132</td>\n",
|
551 |
+
" <td>136</td>\n",
|
552 |
+
" <td>...</td>\n",
|
553 |
+
" <td>48</td>\n",
|
554 |
+
" <td>53</td>\n",
|
555 |
+
" <td>60</td>\n",
|
556 |
+
" <td>58</td>\n",
|
557 |
+
" <td>54</td>\n",
|
558 |
+
" <td>41</td>\n",
|
559 |
+
" <td>48</td>\n",
|
560 |
+
" <td>84</td>\n",
|
561 |
+
" <td>132</td>\n",
|
562 |
+
" <td>120</td>\n",
|
563 |
+
" </tr>\n",
|
564 |
+
" <tr>\n",
|
565 |
+
" <th>3667</th>\n",
|
566 |
+
" <td>88</td>\n",
|
567 |
+
" <td>72</td>\n",
|
568 |
+
" <td>78</td>\n",
|
569 |
+
" <td>97</td>\n",
|
570 |
+
" <td>57</td>\n",
|
571 |
+
" <td>77</td>\n",
|
572 |
+
" <td>91</td>\n",
|
573 |
+
" <td>79</td>\n",
|
574 |
+
" <td>46</td>\n",
|
575 |
+
" <td>77</td>\n",
|
576 |
+
" <td>...</td>\n",
|
577 |
+
" <td>83</td>\n",
|
578 |
+
" <td>71</td>\n",
|
579 |
+
" <td>81</td>\n",
|
580 |
+
" <td>89</td>\n",
|
581 |
+
" <td>91</td>\n",
|
582 |
+
" <td>91</td>\n",
|
583 |
+
" <td>87</td>\n",
|
584 |
+
" <td>103</td>\n",
|
585 |
+
" <td>80</td>\n",
|
586 |
+
" <td>80</td>\n",
|
587 |
+
" </tr>\n",
|
588 |
+
" <tr>\n",
|
589 |
+
" <th>3668</th>\n",
|
590 |
+
" <td>157</td>\n",
|
591 |
+
" <td>189</td>\n",
|
592 |
+
" <td>169</td>\n",
|
593 |
+
" <td>132</td>\n",
|
594 |
+
" <td>174</td>\n",
|
595 |
+
" <td>162</td>\n",
|
596 |
+
" <td>185</td>\n",
|
597 |
+
" <td>174</td>\n",
|
598 |
+
" <td>122</td>\n",
|
599 |
+
" <td>160</td>\n",
|
600 |
+
" <td>...</td>\n",
|
601 |
+
" <td>57</td>\n",
|
602 |
+
" <td>152</td>\n",
|
603 |
+
" <td>193</td>\n",
|
604 |
+
" <td>74</td>\n",
|
605 |
+
" <td>23</td>\n",
|
606 |
+
" <td>18</td>\n",
|
607 |
+
" <td>8</td>\n",
|
608 |
+
" <td>12</td>\n",
|
609 |
+
" <td>19</td>\n",
|
610 |
+
" <td>45</td>\n",
|
611 |
+
" </tr>\n",
|
612 |
+
" <tr>\n",
|
613 |
+
" <th>3669</th>\n",
|
614 |
+
" <td>49</td>\n",
|
615 |
+
" <td>62</td>\n",
|
616 |
+
" <td>118</td>\n",
|
617 |
+
" <td>122</td>\n",
|
618 |
+
" <td>75</td>\n",
|
619 |
+
" <td>164</td>\n",
|
620 |
+
" <td>127</td>\n",
|
621 |
+
" <td>98</td>\n",
|
622 |
+
" <td>74</td>\n",
|
623 |
+
" <td>78</td>\n",
|
624 |
+
" <td>...</td>\n",
|
625 |
+
" <td>98</td>\n",
|
626 |
+
" <td>146</td>\n",
|
627 |
+
" <td>80</td>\n",
|
628 |
+
" <td>45</td>\n",
|
629 |
+
" <td>63</td>\n",
|
630 |
+
" <td>47</td>\n",
|
631 |
+
" <td>91</td>\n",
|
632 |
+
" <td>56</td>\n",
|
633 |
+
" <td>76</td>\n",
|
634 |
+
" <td>57</td>\n",
|
635 |
+
" </tr>\n",
|
636 |
+
" </tbody>\n",
|
637 |
+
"</table>\n",
|
638 |
+
"<p>3670 rows × 2500 columns</p>\n",
|
639 |
+
"</div>"
|
640 |
+
],
|
641 |
+
"text/plain": [
|
642 |
+
" 0 1 2 3 4 5 6 7 8 9 ... 2490 \\\n",
|
643 |
+
"0 143 149 160 169 167 167 145 144 144 159 ... 171 \n",
|
644 |
+
"1 224 222 216 232 228 75 85 80 182 185 ... 120 \n",
|
645 |
+
"2 108 81 97 84 102 120 108 106 140 128 ... 38 \n",
|
646 |
+
"3 26 25 26 29 32 35 37 38 38 40 ... 18 \n",
|
647 |
+
"4 20 21 36 45 46 45 40 42 37 56 ... 26 \n",
|
648 |
+
"... ... ... ... ... ... ... ... ... ... ... ... ... \n",
|
649 |
+
"3665 212 189 186 212 47 82 116 131 82 79 ... 83 \n",
|
650 |
+
"3666 135 126 129 131 119 141 135 128 132 136 ... 48 \n",
|
651 |
+
"3667 88 72 78 97 57 77 91 79 46 77 ... 83 \n",
|
652 |
+
"3668 157 189 169 132 174 162 185 174 122 160 ... 57 \n",
|
653 |
+
"3669 49 62 118 122 75 164 127 98 74 78 ... 98 \n",
|
654 |
+
"\n",
|
655 |
+
" 2491 2492 2493 2494 2495 2496 2497 2498 2499 \n",
|
656 |
+
"0 174 168 149 134 128 137 137 131 127 \n",
|
657 |
+
"1 116 107 110 108 156 169 141 125 172 \n",
|
658 |
+
"2 44 27 26 26 27 27 31 36 40 \n",
|
659 |
+
"3 16 15 16 21 18 24 16 20 23 \n",
|
660 |
+
"4 42 48 42 26 25 31 39 27 35 \n",
|
661 |
+
"... ... ... ... ... ... ... ... ... ... \n",
|
662 |
+
"3665 103 114 40 7 30 30 86 194 215 \n",
|
663 |
+
"3666 53 60 58 54 41 48 84 132 120 \n",
|
664 |
+
"3667 71 81 89 91 91 87 103 80 80 \n",
|
665 |
+
"3668 152 193 74 23 18 8 12 19 45 \n",
|
666 |
+
"3669 146 80 45 63 47 91 56 76 57 \n",
|
667 |
+
"\n",
|
668 |
+
"[3670 rows x 2500 columns]"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
"execution_count": 47,
|
672 |
+
"metadata": {},
|
673 |
+
"output_type": "execute_result"
|
674 |
+
}
|
675 |
+
],
|
676 |
+
"source": [
|
677 |
+
"final_data "
|
678 |
+
]
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"cell_type": "code",
|
682 |
+
"execution_count": 48,
|
683 |
+
"id": "b1f089c9-df2f-4d7c-b3ba-a3ef75d22256",
|
684 |
+
"metadata": {},
|
685 |
+
"outputs": [],
|
686 |
+
"source": [
|
687 |
+
"final_data[\"class_labels\"]=class_labels # Add a new column \"class_labels\" to the DataFrame with the collected class labels."
|
688 |
+
]
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"cell_type": "code",
|
692 |
+
"execution_count": 49,
|
693 |
+
"id": "583cecc9-cb99-4bc9-93e5-ab67de226bd3",
|
694 |
+
"metadata": {},
|
695 |
+
"outputs": [
|
696 |
+
{
|
697 |
+
"data": {
|
698 |
+
"text/html": [
|
699 |
+
"<div>\n",
|
700 |
+
"<style scoped>\n",
|
701 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
702 |
+
" vertical-align: middle;\n",
|
703 |
+
" }\n",
|
704 |
+
"\n",
|
705 |
+
" .dataframe tbody tr th {\n",
|
706 |
+
" vertical-align: top;\n",
|
707 |
+
" }\n",
|
708 |
+
"\n",
|
709 |
+
" .dataframe thead th {\n",
|
710 |
+
" text-align: right;\n",
|
711 |
+
" }\n",
|
712 |
+
"</style>\n",
|
713 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
714 |
+
" <thead>\n",
|
715 |
+
" <tr style=\"text-align: right;\">\n",
|
716 |
+
" <th></th>\n",
|
717 |
+
" <th>0</th>\n",
|
718 |
+
" <th>1</th>\n",
|
719 |
+
" <th>2</th>\n",
|
720 |
+
" <th>3</th>\n",
|
721 |
+
" <th>4</th>\n",
|
722 |
+
" <th>5</th>\n",
|
723 |
+
" <th>6</th>\n",
|
724 |
+
" <th>7</th>\n",
|
725 |
+
" <th>8</th>\n",
|
726 |
+
" <th>9</th>\n",
|
727 |
+
" <th>...</th>\n",
|
728 |
+
" <th>2491</th>\n",
|
729 |
+
" <th>2492</th>\n",
|
730 |
+
" <th>2493</th>\n",
|
731 |
+
" <th>2494</th>\n",
|
732 |
+
" <th>2495</th>\n",
|
733 |
+
" <th>2496</th>\n",
|
734 |
+
" <th>2497</th>\n",
|
735 |
+
" <th>2498</th>\n",
|
736 |
+
" <th>2499</th>\n",
|
737 |
+
" <th>class_labels</th>\n",
|
738 |
+
" </tr>\n",
|
739 |
+
" </thead>\n",
|
740 |
+
" <tbody>\n",
|
741 |
+
" <tr>\n",
|
742 |
+
" <th>0</th>\n",
|
743 |
+
" <td>143</td>\n",
|
744 |
+
" <td>149</td>\n",
|
745 |
+
" <td>160</td>\n",
|
746 |
+
" <td>169</td>\n",
|
747 |
+
" <td>167</td>\n",
|
748 |
+
" <td>167</td>\n",
|
749 |
+
" <td>145</td>\n",
|
750 |
+
" <td>144</td>\n",
|
751 |
+
" <td>144</td>\n",
|
752 |
+
" <td>159</td>\n",
|
753 |
+
" <td>...</td>\n",
|
754 |
+
" <td>174</td>\n",
|
755 |
+
" <td>168</td>\n",
|
756 |
+
" <td>149</td>\n",
|
757 |
+
" <td>134</td>\n",
|
758 |
+
" <td>128</td>\n",
|
759 |
+
" <td>137</td>\n",
|
760 |
+
" <td>137</td>\n",
|
761 |
+
" <td>131</td>\n",
|
762 |
+
" <td>127</td>\n",
|
763 |
+
" <td>daisy</td>\n",
|
764 |
+
" </tr>\n",
|
765 |
+
" <tr>\n",
|
766 |
+
" <th>1</th>\n",
|
767 |
+
" <td>224</td>\n",
|
768 |
+
" <td>222</td>\n",
|
769 |
+
" <td>216</td>\n",
|
770 |
+
" <td>232</td>\n",
|
771 |
+
" <td>228</td>\n",
|
772 |
+
" <td>75</td>\n",
|
773 |
+
" <td>85</td>\n",
|
774 |
+
" <td>80</td>\n",
|
775 |
+
" <td>182</td>\n",
|
776 |
+
" <td>185</td>\n",
|
777 |
+
" <td>...</td>\n",
|
778 |
+
" <td>116</td>\n",
|
779 |
+
" <td>107</td>\n",
|
780 |
+
" <td>110</td>\n",
|
781 |
+
" <td>108</td>\n",
|
782 |
+
" <td>156</td>\n",
|
783 |
+
" <td>169</td>\n",
|
784 |
+
" <td>141</td>\n",
|
785 |
+
" <td>125</td>\n",
|
786 |
+
" <td>172</td>\n",
|
787 |
+
" <td>daisy</td>\n",
|
788 |
+
" </tr>\n",
|
789 |
+
" <tr>\n",
|
790 |
+
" <th>2</th>\n",
|
791 |
+
" <td>108</td>\n",
|
792 |
+
" <td>81</td>\n",
|
793 |
+
" <td>97</td>\n",
|
794 |
+
" <td>84</td>\n",
|
795 |
+
" <td>102</td>\n",
|
796 |
+
" <td>120</td>\n",
|
797 |
+
" <td>108</td>\n",
|
798 |
+
" <td>106</td>\n",
|
799 |
+
" <td>140</td>\n",
|
800 |
+
" <td>128</td>\n",
|
801 |
+
" <td>...</td>\n",
|
802 |
+
" <td>44</td>\n",
|
803 |
+
" <td>27</td>\n",
|
804 |
+
" <td>26</td>\n",
|
805 |
+
" <td>26</td>\n",
|
806 |
+
" <td>27</td>\n",
|
807 |
+
" <td>27</td>\n",
|
808 |
+
" <td>31</td>\n",
|
809 |
+
" <td>36</td>\n",
|
810 |
+
" <td>40</td>\n",
|
811 |
+
" <td>daisy</td>\n",
|
812 |
+
" </tr>\n",
|
813 |
+
" <tr>\n",
|
814 |
+
" <th>3</th>\n",
|
815 |
+
" <td>26</td>\n",
|
816 |
+
" <td>25</td>\n",
|
817 |
+
" <td>26</td>\n",
|
818 |
+
" <td>29</td>\n",
|
819 |
+
" <td>32</td>\n",
|
820 |
+
" <td>35</td>\n",
|
821 |
+
" <td>37</td>\n",
|
822 |
+
" <td>38</td>\n",
|
823 |
+
" <td>38</td>\n",
|
824 |
+
" <td>40</td>\n",
|
825 |
+
" <td>...</td>\n",
|
826 |
+
" <td>16</td>\n",
|
827 |
+
" <td>15</td>\n",
|
828 |
+
" <td>16</td>\n",
|
829 |
+
" <td>21</td>\n",
|
830 |
+
" <td>18</td>\n",
|
831 |
+
" <td>24</td>\n",
|
832 |
+
" <td>16</td>\n",
|
833 |
+
" <td>20</td>\n",
|
834 |
+
" <td>23</td>\n",
|
835 |
+
" <td>daisy</td>\n",
|
836 |
+
" </tr>\n",
|
837 |
+
" <tr>\n",
|
838 |
+
" <th>4</th>\n",
|
839 |
+
" <td>20</td>\n",
|
840 |
+
" <td>21</td>\n",
|
841 |
+
" <td>36</td>\n",
|
842 |
+
" <td>45</td>\n",
|
843 |
+
" <td>46</td>\n",
|
844 |
+
" <td>45</td>\n",
|
845 |
+
" <td>40</td>\n",
|
846 |
+
" <td>42</td>\n",
|
847 |
+
" <td>37</td>\n",
|
848 |
+
" <td>56</td>\n",
|
849 |
+
" <td>...</td>\n",
|
850 |
+
" <td>42</td>\n",
|
851 |
+
" <td>48</td>\n",
|
852 |
+
" <td>42</td>\n",
|
853 |
+
" <td>26</td>\n",
|
854 |
+
" <td>25</td>\n",
|
855 |
+
" <td>31</td>\n",
|
856 |
+
" <td>39</td>\n",
|
857 |
+
" <td>27</td>\n",
|
858 |
+
" <td>35</td>\n",
|
859 |
+
" <td>daisy</td>\n",
|
860 |
+
" </tr>\n",
|
861 |
+
" <tr>\n",
|
862 |
+
" <th>...</th>\n",
|
863 |
+
" <td>...</td>\n",
|
864 |
+
" <td>...</td>\n",
|
865 |
+
" <td>...</td>\n",
|
866 |
+
" <td>...</td>\n",
|
867 |
+
" <td>...</td>\n",
|
868 |
+
" <td>...</td>\n",
|
869 |
+
" <td>...</td>\n",
|
870 |
+
" <td>...</td>\n",
|
871 |
+
" <td>...</td>\n",
|
872 |
+
" <td>...</td>\n",
|
873 |
+
" <td>...</td>\n",
|
874 |
+
" <td>...</td>\n",
|
875 |
+
" <td>...</td>\n",
|
876 |
+
" <td>...</td>\n",
|
877 |
+
" <td>...</td>\n",
|
878 |
+
" <td>...</td>\n",
|
879 |
+
" <td>...</td>\n",
|
880 |
+
" <td>...</td>\n",
|
881 |
+
" <td>...</td>\n",
|
882 |
+
" <td>...</td>\n",
|
883 |
+
" <td>...</td>\n",
|
884 |
+
" </tr>\n",
|
885 |
+
" <tr>\n",
|
886 |
+
" <th>3665</th>\n",
|
887 |
+
" <td>212</td>\n",
|
888 |
+
" <td>189</td>\n",
|
889 |
+
" <td>186</td>\n",
|
890 |
+
" <td>212</td>\n",
|
891 |
+
" <td>47</td>\n",
|
892 |
+
" <td>82</td>\n",
|
893 |
+
" <td>116</td>\n",
|
894 |
+
" <td>131</td>\n",
|
895 |
+
" <td>82</td>\n",
|
896 |
+
" <td>79</td>\n",
|
897 |
+
" <td>...</td>\n",
|
898 |
+
" <td>103</td>\n",
|
899 |
+
" <td>114</td>\n",
|
900 |
+
" <td>40</td>\n",
|
901 |
+
" <td>7</td>\n",
|
902 |
+
" <td>30</td>\n",
|
903 |
+
" <td>30</td>\n",
|
904 |
+
" <td>86</td>\n",
|
905 |
+
" <td>194</td>\n",
|
906 |
+
" <td>215</td>\n",
|
907 |
+
" <td>tulips</td>\n",
|
908 |
+
" </tr>\n",
|
909 |
+
" <tr>\n",
|
910 |
+
" <th>3666</th>\n",
|
911 |
+
" <td>135</td>\n",
|
912 |
+
" <td>126</td>\n",
|
913 |
+
" <td>129</td>\n",
|
914 |
+
" <td>131</td>\n",
|
915 |
+
" <td>119</td>\n",
|
916 |
+
" <td>141</td>\n",
|
917 |
+
" <td>135</td>\n",
|
918 |
+
" <td>128</td>\n",
|
919 |
+
" <td>132</td>\n",
|
920 |
+
" <td>136</td>\n",
|
921 |
+
" <td>...</td>\n",
|
922 |
+
" <td>53</td>\n",
|
923 |
+
" <td>60</td>\n",
|
924 |
+
" <td>58</td>\n",
|
925 |
+
" <td>54</td>\n",
|
926 |
+
" <td>41</td>\n",
|
927 |
+
" <td>48</td>\n",
|
928 |
+
" <td>84</td>\n",
|
929 |
+
" <td>132</td>\n",
|
930 |
+
" <td>120</td>\n",
|
931 |
+
" <td>tulips</td>\n",
|
932 |
+
" </tr>\n",
|
933 |
+
" <tr>\n",
|
934 |
+
" <th>3667</th>\n",
|
935 |
+
" <td>88</td>\n",
|
936 |
+
" <td>72</td>\n",
|
937 |
+
" <td>78</td>\n",
|
938 |
+
" <td>97</td>\n",
|
939 |
+
" <td>57</td>\n",
|
940 |
+
" <td>77</td>\n",
|
941 |
+
" <td>91</td>\n",
|
942 |
+
" <td>79</td>\n",
|
943 |
+
" <td>46</td>\n",
|
944 |
+
" <td>77</td>\n",
|
945 |
+
" <td>...</td>\n",
|
946 |
+
" <td>71</td>\n",
|
947 |
+
" <td>81</td>\n",
|
948 |
+
" <td>89</td>\n",
|
949 |
+
" <td>91</td>\n",
|
950 |
+
" <td>91</td>\n",
|
951 |
+
" <td>87</td>\n",
|
952 |
+
" <td>103</td>\n",
|
953 |
+
" <td>80</td>\n",
|
954 |
+
" <td>80</td>\n",
|
955 |
+
" <td>tulips</td>\n",
|
956 |
+
" </tr>\n",
|
957 |
+
" <tr>\n",
|
958 |
+
" <th>3668</th>\n",
|
959 |
+
" <td>157</td>\n",
|
960 |
+
" <td>189</td>\n",
|
961 |
+
" <td>169</td>\n",
|
962 |
+
" <td>132</td>\n",
|
963 |
+
" <td>174</td>\n",
|
964 |
+
" <td>162</td>\n",
|
965 |
+
" <td>185</td>\n",
|
966 |
+
" <td>174</td>\n",
|
967 |
+
" <td>122</td>\n",
|
968 |
+
" <td>160</td>\n",
|
969 |
+
" <td>...</td>\n",
|
970 |
+
" <td>152</td>\n",
|
971 |
+
" <td>193</td>\n",
|
972 |
+
" <td>74</td>\n",
|
973 |
+
" <td>23</td>\n",
|
974 |
+
" <td>18</td>\n",
|
975 |
+
" <td>8</td>\n",
|
976 |
+
" <td>12</td>\n",
|
977 |
+
" <td>19</td>\n",
|
978 |
+
" <td>45</td>\n",
|
979 |
+
" <td>tulips</td>\n",
|
980 |
+
" </tr>\n",
|
981 |
+
" <tr>\n",
|
982 |
+
" <th>3669</th>\n",
|
983 |
+
" <td>49</td>\n",
|
984 |
+
" <td>62</td>\n",
|
985 |
+
" <td>118</td>\n",
|
986 |
+
" <td>122</td>\n",
|
987 |
+
" <td>75</td>\n",
|
988 |
+
" <td>164</td>\n",
|
989 |
+
" <td>127</td>\n",
|
990 |
+
" <td>98</td>\n",
|
991 |
+
" <td>74</td>\n",
|
992 |
+
" <td>78</td>\n",
|
993 |
+
" <td>...</td>\n",
|
994 |
+
" <td>146</td>\n",
|
995 |
+
" <td>80</td>\n",
|
996 |
+
" <td>45</td>\n",
|
997 |
+
" <td>63</td>\n",
|
998 |
+
" <td>47</td>\n",
|
999 |
+
" <td>91</td>\n",
|
1000 |
+
" <td>56</td>\n",
|
1001 |
+
" <td>76</td>\n",
|
1002 |
+
" <td>57</td>\n",
|
1003 |
+
" <td>tulips</td>\n",
|
1004 |
+
" </tr>\n",
|
1005 |
+
" </tbody>\n",
|
1006 |
+
"</table>\n",
|
1007 |
+
"<p>3670 rows × 2501 columns</p>\n",
|
1008 |
+
"</div>"
|
1009 |
+
],
|
1010 |
+
"text/plain": [
|
1011 |
+
" 0 1 2 3 4 5 6 7 8 9 ... 2491 2492 2493 \\\n",
|
1012 |
+
"0 143 149 160 169 167 167 145 144 144 159 ... 174 168 149 \n",
|
1013 |
+
"1 224 222 216 232 228 75 85 80 182 185 ... 116 107 110 \n",
|
1014 |
+
"2 108 81 97 84 102 120 108 106 140 128 ... 44 27 26 \n",
|
1015 |
+
"3 26 25 26 29 32 35 37 38 38 40 ... 16 15 16 \n",
|
1016 |
+
"4 20 21 36 45 46 45 40 42 37 56 ... 42 48 42 \n",
|
1017 |
+
"... ... ... ... ... ... ... ... ... ... ... ... ... ... ... \n",
|
1018 |
+
"3665 212 189 186 212 47 82 116 131 82 79 ... 103 114 40 \n",
|
1019 |
+
"3666 135 126 129 131 119 141 135 128 132 136 ... 53 60 58 \n",
|
1020 |
+
"3667 88 72 78 97 57 77 91 79 46 77 ... 71 81 89 \n",
|
1021 |
+
"3668 157 189 169 132 174 162 185 174 122 160 ... 152 193 74 \n",
|
1022 |
+
"3669 49 62 118 122 75 164 127 98 74 78 ... 146 80 45 \n",
|
1023 |
+
"\n",
|
1024 |
+
" 2494 2495 2496 2497 2498 2499 class_labels \n",
|
1025 |
+
"0 134 128 137 137 131 127 daisy \n",
|
1026 |
+
"1 108 156 169 141 125 172 daisy \n",
|
1027 |
+
"2 26 27 27 31 36 40 daisy \n",
|
1028 |
+
"3 21 18 24 16 20 23 daisy \n",
|
1029 |
+
"4 26 25 31 39 27 35 daisy \n",
|
1030 |
+
"... ... ... ... ... ... ... ... \n",
|
1031 |
+
"3665 7 30 30 86 194 215 tulips \n",
|
1032 |
+
"3666 54 41 48 84 132 120 tulips \n",
|
1033 |
+
"3667 91 91 87 103 80 80 tulips \n",
|
1034 |
+
"3668 23 18 8 12 19 45 tulips \n",
|
1035 |
+
"3669 63 47 91 56 76 57 tulips \n",
|
1036 |
+
"\n",
|
1037 |
+
"[3670 rows x 2501 columns]"
|
1038 |
+
]
|
1039 |
+
},
|
1040 |
+
"execution_count": 49,
|
1041 |
+
"metadata": {},
|
1042 |
+
"output_type": "execute_result"
|
1043 |
+
}
|
1044 |
+
],
|
1045 |
+
"source": [
|
1046 |
+
"final_data # Display the entire DataFrame to examine its structure and data."
|
1047 |
+
]
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"cell_type": "code",
|
1051 |
+
"execution_count": 50,
|
1052 |
+
"id": "4bd4960b-0677-40bd-8256-73ed2fb70114",
|
1053 |
+
"metadata": {},
|
1054 |
+
"outputs": [
|
1055 |
+
{
|
1056 |
+
"name": "stdout",
|
1057 |
+
"output_type": "stream",
|
1058 |
+
"text": [
|
1059 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
1060 |
+
"RangeIndex: 3670 entries, 0 to 3669\n",
|
1061 |
+
"Columns: 2501 entries, 0 to class_labels\n",
|
1062 |
+
"dtypes: object(1), uint8(2500)\n",
|
1063 |
+
"memory usage: 8.8+ MB\n"
|
1064 |
+
]
|
1065 |
+
}
|
1066 |
+
],
|
1067 |
+
"source": [
|
1068 |
+
"final_data.info() # Display detailed information about the DataFrame, including column types and memory usage."
|
1069 |
+
]
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"cell_type": "code",
|
1073 |
+
"execution_count": null,
|
1074 |
+
"id": "b95f3573-f73a-468e-b12c-a605c93c6ded",
|
1075 |
+
"metadata": {},
|
1076 |
+
"outputs": [],
|
1077 |
+
"source": []
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"cell_type": "code",
|
1081 |
+
"execution_count": null,
|
1082 |
+
"id": "bab6163f-9907-4cce-9e21-c37eabb6b5a0",
|
1083 |
+
"metadata": {},
|
1084 |
+
"outputs": [],
|
1085 |
+
"source": []
|
1086 |
+
}
|
1087 |
+
],
|
1088 |
+
"metadata": {
|
1089 |
+
"kernelspec": {
|
1090 |
+
"display_name": "Python 3 (ipykernel)",
|
1091 |
+
"language": "python",
|
1092 |
+
"name": "python3"
|
1093 |
+
},
|
1094 |
+
"language_info": {
|
1095 |
+
"codemirror_mode": {
|
1096 |
+
"name": "ipython",
|
1097 |
+
"version": 3
|
1098 |
+
},
|
1099 |
+
"file_extension": ".py",
|
1100 |
+
"mimetype": "text/x-python",
|
1101 |
+
"name": "python",
|
1102 |
+
"nbconvert_exporter": "python",
|
1103 |
+
"pygments_lexer": "ipython3",
|
1104 |
+
"version": "3.11.7"
|
1105 |
+
}
|
1106 |
+
},
|
1107 |
+
"nbformat": 4,
|
1108 |
+
"nbformat_minor": 5
|
1109 |
+
}
|
image_show(b,g,r)_in_window.ipynb
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
+
"id": "2a48ed33-0649-440a-a672-366eccecc595",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import cv2\n",
|
11 |
+
"import numpy as np"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 9,
|
17 |
+
"id": "79e94481-02c5-41df-b243-b5ab9d6215cf",
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"white_img=np.full((400,500),255,dtype=np.uint8) # Create a white image (400x500 pixels) with all values set to 255."
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 10,
|
27 |
+
"id": "dafbe73b-1c9a-4ecd-a97b-273066fa722b",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"text/plain": [
|
33 |
+
"True"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"execution_count": 10,
|
37 |
+
"metadata": {},
|
38 |
+
"output_type": "execute_result"
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"source": [
|
42 |
+
"cv2.imwrite(r\"C:\\Users\\Singh\\Downloads\\flower_photos\\white.jpg\",white_img) # Save the white image as \"white.jpg\" in the specified directory."
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 13,
|
48 |
+
"id": "84e50e23-dcac-4d6a-b1b9-a3cf10d4e4f0",
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"img=cv2.imread(r\"C:\\Users\\Singh\\Downloads\\flower_photos\\tulips\\54895006_55b49052dc.jpg\") # Load the image \"tulips\" from the specified directory."
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 14,
|
58 |
+
"id": "2f465e89-1151-4e14-ad1d-14208ee8ba43",
|
59 |
+
"metadata": {},
|
60 |
+
"outputs": [
|
61 |
+
{
|
62 |
+
"data": {
|
63 |
+
"text/plain": [
|
64 |
+
"(333, 500, 3)"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
"execution_count": 14,
|
68 |
+
"metadata": {},
|
69 |
+
"output_type": "execute_result"
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"source": [
|
73 |
+
"img.shape # Get the shape of the image (height, width, and color channels)."
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": 17,
|
79 |
+
"id": "0b34448d-47eb-45be-8595-b08f1a17716d",
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [
|
82 |
+
{
|
83 |
+
"data": {
|
84 |
+
"text/plain": [
|
85 |
+
"(333, 500)"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
"execution_count": 17,
|
89 |
+
"metadata": {},
|
90 |
+
"output_type": "execute_result"
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"source": [
|
94 |
+
"img.shape[:-1] # Get only the height and width of the image by excluding the color channels."
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": 16,
|
100 |
+
"id": "39a4831e-4415-4699-a0ae-24222370e0c3",
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"b,g,r=cv2.split(img) # Split the image into its blue (b), green (g), and red (r) channels."
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 19,
|
110 |
+
"id": "d56c4865-f80f-4cd7-af69-1b3437cb8315",
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"zeros=np.zeros(img.shape[:-1],dtype=np.uint8) # Create a zero matrix with the same height and width as the image for masking."
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 20,
|
120 |
+
"id": "cd625553-7992-4706-aae7-4bbaaf9daee6",
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"blue_channel=cv2.merge([b,zeros,zeros]) # Create the blue channel by combining the blue channel and zero matrices for other channels.\n",
|
125 |
+
"green_channel=cv2.merge([zeros,b,zeros]) # Create the green channel by combining the green channel and zero matrices for other channels.\n",
|
126 |
+
"red_channel=cv2.merge([zeros,zeros,r]) # Create the red channel by combining the red channel and zero matrices for other channels."
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": null,
|
132 |
+
"id": "3c896f79-ec7d-4bcf-8db6-2e09d1551b6b",
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"cv2.imshow(\"blue_channel\",blue_channel) # Display the blue channel image in a window.\n",
|
137 |
+
"cv2.imshow(\"green_channel\",green_channel) # Display the green channel image in a window.\n",
|
138 |
+
"cv2.imshow(\"red_channel\",red_channel) # Display the red channel image in a window.\n",
|
139 |
+
"cv2.imshow(\"original_channel\",cv2.merge([b,g,r])) # Display the original image by merging the blue, green, and red channels back together.\n",
|
140 |
+
"\n",
|
141 |
+
"cv2.waitKey() # Wait indefinitely until a key is pressed.\n",
|
142 |
+
"cv2.destroyAllWindows() # Close all OpenCV windows."
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "code",
|
147 |
+
"execution_count": null,
|
148 |
+
"id": "12381df8-94f1-4523-bbd3-d6d26052c5da",
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": []
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"metadata": {
|
155 |
+
"kernelspec": {
|
156 |
+
"display_name": "Python 3 (ipykernel)",
|
157 |
+
"language": "python",
|
158 |
+
"name": "python3"
|
159 |
+
},
|
160 |
+
"language_info": {
|
161 |
+
"codemirror_mode": {
|
162 |
+
"name": "ipython",
|
163 |
+
"version": 3
|
164 |
+
},
|
165 |
+
"file_extension": ".py",
|
166 |
+
"mimetype": "text/x-python",
|
167 |
+
"name": "python",
|
168 |
+
"nbconvert_exporter": "python",
|
169 |
+
"pygments_lexer": "ipython3",
|
170 |
+
"version": "3.11.7"
|
171 |
+
}
|
172 |
+
},
|
173 |
+
"nbformat": 4,
|
174 |
+
"nbformat_minor": 5
|
175 |
+
}
|