Zero_to_Hero_Machine_Learning / pages /Life Cycle Of Machine Learning.py
shwetashweta05's picture
Update pages/Life Cycle Of Machine Learning.py
8de1212 verified
raw
history blame
2.72 kB
import streamlit as st
st.header(":red[**Life Cycle Of Machine Learning Project**]")
st.write(":blue[Click the buttons below to explore detailed steps involved in an ML project:]")
# Problem Statement Section
if st.button("**Problem Statement**"):
st.write("""
**A problem statement in machine learning defines the specific issue you want to solve using data and machine learning techniques.**
**Key Elements of a Problem Statement:**
- What the problem is
- Why solving it is important
- What data is available
- What the expected outcome will look like
**Example - Predicting House Prices:**
- **Problem:** Predict house prices based on size, location, number of bedrooms, etc.
- **Why:** Helps buyers and real estate agents make informed decisions.
- **Data:** Historical data on house prices and features.
- **Expected Outcome:** A predictive model for house prices.
""")
st.markdown("[Learn more about Problem Statements](https://huggingface.co/spaces/shwetashweta05/Zero_to_Hero_Machine_Learning)")
# Data Collection Section
if st.button("**Data Collection**"):
st.write("""
**Data collection involves gathering relevant data to solve your ML problem.**
- Identify the source of data (e.g., sensors, databases, web scraping).
- Ensure data quality and relevance.
- Examples include datasets for image classification, sales prediction, etc.
""")
st.markdown("[Learn more about Data Collection](https://huggingface.co/spaces/shwetashweta05/Zero_to_Hero_Machine_Learning)")
# Simple EDA Section
if st.button("**Simple EDA**"):
st.write("**Exploring data for initial insights and understanding.**")
# Data Preprocessing Section
if st.button("**Data Pre-processing**"):
st.write("**Cleaning and preparing data for analysis.**")
# Exploratory Data Analysis Section
if st.button("**Exploratory Data Analysis (EDA)**"):
st.write("**In-depth data analysis to discover patterns and relationships.**")
# Feature Engineering Section
if st.button("**Feature Engineering**"):
st.write("**Creating or transforming features to improve model performance.**")
# Training Section
if st.button("**Training**"):
st.write("**Building and training machine learning models.**")
# Testing Section
if st.button("**Testing**"):
st.write("**Evaluating model performance on test data.**")
# Deployment Section
if st.button("**Deployment**"):
st.write("**Deploying the model for real-world use.**")
# Monitoring Section
if st.button("**Monitoring**"):
st.write("**Continuously tracking model performance and making improvements.**")