File size: 1,620 Bytes
63ca6f4
 
 
 
f3a00cd
e840569
87bf5ed
888ddb9
3897d46
3e84a5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888ddb9
733818c
3897d46
3e84a5a
87bf5ed
3e84a5a
888ddb9
3e84a5a
888ddb9
3e84a5a
888ddb9
3e84a5a
5b48db4
3e84a5a
888ddb9
3e84a5a
888ddb9
3e84a5a
888ddb9
3e84a5a
888ddb9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import streamlit as st
import numpy as np 
import pandas as pd

st.header(":red[**Life Cycle Of Machine Learning Project**]")
st.write(":blue[Click the button below to explore detailed steps involved in an ML project:]")

if st.button("**Problem Statement**"):
    if st.link_button("**Problem statement of Machine Learning**"):
        st.write("""
        *A problem statement in machine learning defines the specific issue you want to solve using data and machine learning techniques. It should clearly explain:**
    - What the problem is
    - Why solving it is important
    - What data is available
    - What the expected outcome will look like
        """)
        st.write("""
         **Examples of ML Problem Statements:**
    - **Predicting House Prices:**
    - Problem: We want to predict the price of houses based on features like size, location, number of bedrooms, etc.
    - Why: This helps buyers make informed decisions and real estate agents price houses correctly.
    - Data: Historical data about house prices and their features.
    - Expected Outcome: A model that predicts the price of a house given its features.
    """)
    
if st.button("**Data Collection**"):
    if st.link_button("**About Data Collection of Machine Learning**"):
        st.write("")
    
#if st.button("**Simple EDA**"):
   
#if st.button("**Data Pre-processing**"):
   
#if st.button("**Exploratory Data Analysis (EDA)**"):
    
#if st.button("**Feature Engineering**"):

#if st.button("**Training**"):
   
#if st.button("**Testing**"):
    
#if st.button("**Deployment**"):
   
#if st.button("**Monitoring**"):