shubham142000
commited on
Commit
•
e1efc31
1
Parent(s):
3f51766
Update bert_embeddings.py
Browse files- bert_embeddings.py +40 -0
bert_embeddings.py
CHANGED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertTokenizer, BertModel
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def get_bert_embeddings_from_texts(positive_text, unlabelled_text, batch_size=32):
|
6 |
+
# Initialize BERT tokenizer and model
|
7 |
+
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
8 |
+
bert_model = BertModel.from_pretrained('bert-base-uncased')
|
9 |
+
|
10 |
+
def get_bert_embeddings(texts, tokenizer, model, batch_size=32):
|
11 |
+
all_embeddings = []
|
12 |
+
|
13 |
+
for i in range(0, len(texts), batch_size):
|
14 |
+
batch_texts = texts[i:i+batch_size]
|
15 |
+
|
16 |
+
# Tokenize the batch of texts
|
17 |
+
tokens = tokenizer(batch_texts, padding=True, truncation=True, return_tensors='pt')
|
18 |
+
|
19 |
+
# Move input tensors to GPU if available
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
tokens = {k: v.to('cuda') for k, v in tokens.items()}
|
22 |
+
|
23 |
+
# Get the BERT embeddings for the batch
|
24 |
+
with torch.no_grad():
|
25 |
+
embeddings = model(**tokens)[0]
|
26 |
+
embeddings = embeddings.mean(dim=1)
|
27 |
+
|
28 |
+
all_embeddings.append(embeddings.cpu())
|
29 |
+
|
30 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
31 |
+
return all_embeddings
|
32 |
+
|
33 |
+
# Get BERT embeddings for positive labeled data
|
34 |
+
bert_embeddings_positive = get_bert_embeddings(positive_text, bert_tokenizer, bert_model)
|
35 |
+
|
36 |
+
# Get BERT embeddings for unlabeled data
|
37 |
+
bert_embeddings_unlabeled = get_bert_embeddings(unlabelled_text, bert_tokenizer, bert_model)
|
38 |
+
|
39 |
+
return bert_embeddings_positive, bert_embeddings_unlabeled
|
40 |
+
|