Update bert_embeddings.py
Browse files- bert_embeddings.py +9 -35
bert_embeddings.py
CHANGED
@@ -1,40 +1,14 @@
|
|
1 |
-
from
|
2 |
-
import torch
|
3 |
import numpy as np
|
4 |
|
5 |
-
def
|
6 |
-
# Initialize
|
7 |
-
|
8 |
-
bert_model = BertModel.from_pretrained('bert-base-uncased')
|
9 |
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Tokenize the batch of texts
|
17 |
-
tokens = tokenizer(batch_texts, padding=True, truncation=True, return_tensors='pt')
|
18 |
-
|
19 |
-
# Move input tensors to GPU if available
|
20 |
-
if torch.cuda.is_available():
|
21 |
-
tokens = {k: v.to('cuda') for k, v in tokens.items()}
|
22 |
-
|
23 |
-
# Get the BERT embeddings for the batch
|
24 |
-
with torch.no_grad():
|
25 |
-
embeddings = model(**tokens)[0]
|
26 |
-
embeddings = embeddings.mean(dim=1)
|
27 |
-
|
28 |
-
all_embeddings.append(embeddings.cpu())
|
29 |
-
|
30 |
-
all_embeddings = torch.cat(all_embeddings, dim=0)
|
31 |
-
return all_embeddings
|
32 |
-
|
33 |
-
# Get BERT embeddings for positive labeled data
|
34 |
-
bert_embeddings_positive = get_bert_embeddings(positive_text, bert_tokenizer, bert_model)
|
35 |
-
|
36 |
-
# Get BERT embeddings for unlabeled data
|
37 |
-
bert_embeddings_unlabeled = get_bert_embeddings(unlabelled_text, bert_tokenizer, bert_model)
|
38 |
-
|
39 |
-
return bert_embeddings_positive, bert_embeddings_unlabeled
|
40 |
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
|
|
2 |
import numpy as np
|
3 |
|
4 |
+
def get_sentence_embeddings(positive_text, unlabelled_text):
|
5 |
+
# Initialize SentenceTransformer model
|
6 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
7 |
|
8 |
+
# Generate embeddings for positive text
|
9 |
+
positive_embeddings = model.encode(positive_text)
|
10 |
|
11 |
+
# Generate embeddings for unlabelled text
|
12 |
+
unlabelled_embeddings = model.encode(unlabelled_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
return positive_embeddings, unlabelled_embeddings
|