File size: 6,233 Bytes
01bb3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding: utf-8 -*-
__author__ = "S.X.Zhang"
import torch
import torch.nn as nn
import torch.nn.functional as F
from IndicPhotoOCR.detection.textbpn.network.layers.vgg import VggNet
from IndicPhotoOCR.detection.textbpn.network.layers.resnet import ResNet
from IndicPhotoOCR.detection.textbpn.network.layers.resnet_dcn import ResNet_DCN
from IndicPhotoOCR.detection.textbpn.cfglib.config import config as cfg


class UpBlok(nn.Module):

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
        self.conv3x3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.deconv = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=4, stride=2, padding=1)

    def forward(self, upsampled, shortcut):
        x = torch.cat([upsampled, shortcut], dim=1)
        x = self.conv1x1(x)
        x = F.relu(x)
        x = self.conv3x3(x)
        x = F.relu(x)
        x = self.deconv(x)
        return x


class MergeBlok(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
        self.conv3x3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

    def forward(self, upsampled, shortcut):
        x = torch.cat([upsampled, shortcut], dim=1)
        x = self.conv1x1(x)
        x = F.relu(x)
        x = self.conv3x3(x)
        return x


class FPN(nn.Module):

    def __init__(self, backbone='resnet50', is_training=True):
        super().__init__()
        self.is_training = is_training
        self.backbone_name = backbone

        if backbone in ['vgg_bn', 'vgg']:
            self.backbone = VggNet(name=backbone, pretrain=is_training)
            self.deconv5 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1)
            self.merge4 = UpBlok(512 + 256, 128)
            self.merge3 = UpBlok(256 + 128, 64)
            if cfg.scale == 1:
                self.merge2 = UpBlok(128 + 64, 32)  # FPN 1/2
                self.merge1 = UpBlok(64 + 32, 32)   # FPN 1/1
            elif cfg.scale == 2:
                self.merge2 = UpBlok(128 + 64, 32)    # FPN 1/2
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/2
            elif cfg.scale == 4:
                self.merge2 = MergeBlok(128 + 64, 32)  # FPN 1/4

        elif backbone in ['resnet50']:
            self.backbone = ResNet(name=backbone, pretrain=is_training)
            self.deconv5 = nn.ConvTranspose2d(2048, 256, kernel_size=4, stride=2, padding=1)
            self.merge4 = UpBlok(1024 + 256, 128)
            self.merge3 = UpBlok(512 + 128, 64)
            if cfg.scale == 1:
                self.merge2 = UpBlok(256 + 64, 32)  # FPN 1/2
                self.merge1 = UpBlok(64 + 32, 32)   # FPN 1/1
            elif cfg.scale == 2:
                self.merge2 = UpBlok(256 + 64, 32)    # FPN 1/2
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/2
            elif cfg.scale == 4:
                self.merge2 = MergeBlok(256 + 64, 32)  # FPN 1/4
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/4
        
        elif backbone in ['resnet18']:
            self.backbone = ResNet(name=backbone, pretrain=is_training)
            self.deconv5 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1)
            self.merge4 = UpBlok(256 + 256, 128)
            self.merge3 = UpBlok(128 + 128, 64)
            if cfg.scale == 1:
                self.merge2 = UpBlok(64 + 64, 32)  # FPN 1/2
                self.merge1 = UpBlok(64 + 32, 32)   # FPN 1/1
            elif cfg.scale == 2:
                self.merge2 = UpBlok(64 + 64, 32)    # FPN 1/2
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/2
            elif cfg.scale == 4:
                self.merge2 = MergeBlok(64 + 64, 32)  # FPN 1/4
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/4
       
        elif backbone in ["deformable_resnet18"]:
            self.backbone = ResNet_DCN(name=backbone, pretrain=is_training)
            self.deconv5 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1)
            self.merge4 = UpBlok(256 + 256, 128)
            self.merge3 = UpBlok(128 + 128, 64)
            if cfg.scale == 1:
                self.merge2 = UpBlok(64 + 64, 32)  # FPN 1/2
                self.merge1 = UpBlok(64 + 32, 32)   # FPN 1/1
            elif cfg.scale == 2:
                self.merge2 = UpBlok(64 + 64, 32)    # FPN 1/2
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/2
            elif cfg.scale == 4:
                self.merge2 = MergeBlok(64 + 64, 32)  # FPN 1/4
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/4
        
        elif backbone in ["deformable_resnet50"]:
            self.backbone = ResNet_DCN(name=backbone, pretrain=is_training)
            self.deconv5 = nn.ConvTranspose2d(2048, 256, kernel_size=4, stride=2, padding=1)
            self.merge4 = UpBlok(1024 + 256, 128)
            self.merge3 = UpBlok(512 + 128, 64)
            if cfg.scale == 1:
                self.merge2 = UpBlok(256 + 64, 32)  # FPN 1/2
                self.merge1 = UpBlok(64 + 32, 32)  # FPN 1/1
            elif cfg.scale == 2:
                self.merge2 = UpBlok(256 + 64, 32)  # FPN 1/2
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/2
            elif cfg.scale == 4:
                self.merge2 = MergeBlok(256 + 64, 32)  # FPN 1/4
                self.merge1 = MergeBlok(64 + 32, 32)  # FPN 1/4
        else:
            print("backbone is not support !")

    def forward(self, x):
        C1, C2, C3, C4, C5 = self.backbone(x)
        #print(C5.size())
        #print(C4.size())
        #print(C3.size())
        #print(C2.size())
        #print(C1.size())
        up5 = self.deconv5(C5)
        up5 = F.relu(up5)

        up4 = self.merge4(C4, up5)
        up4 = F.relu(up4)

        up3 = self.merge3(C3, up4)
        up3 = F.relu(up3)

        up2 = self.merge2(C2, up3)
        up2 = F.relu(up2)

        up1 = self.merge1(C1, up2)
        up1 = F.relu(up1)

        return up1, up2, up3, up4, up5