Spaces:
Sleeping
Sleeping
sonika1503
commited on
Commit
·
da17856
1
Parent(s):
3104c71
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import instaloader
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from typing import Optional, List, Dict, Union
|
9 |
+
|
10 |
+
import os
|
11 |
+
import torch
|
12 |
+
import cv2
|
13 |
+
import instaloader
|
14 |
+
from PIL import Image
|
15 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
16 |
+
import streamlit as st
|
17 |
+
|
18 |
+
def download_instagram_reels(hashtag, num_reels=1, username="your_username", password="your_password"):
|
19 |
+
# Remove previous downloads if they exist
|
20 |
+
os.system("rm -rf downloaded_reels")
|
21 |
+
os.makedirs("downloaded_reels", exist_ok=True)
|
22 |
+
|
23 |
+
loader = instaloader.Instaloader(download_videos=True, download_video_thumbnails=True, download_comments=True)
|
24 |
+
|
25 |
+
try:
|
26 |
+
# Login to Instagram
|
27 |
+
loader.login(username, password)
|
28 |
+
|
29 |
+
# Get posts by hashtag
|
30 |
+
posts = instaloader.Hashtag.from_name(loader.context, hashtag).get_posts()
|
31 |
+
|
32 |
+
reel_urls = []
|
33 |
+
for post in posts:
|
34 |
+
if post.is_video:
|
35 |
+
reel_urls.append(post.url)
|
36 |
+
if len(reel_urls) >= num_reels:
|
37 |
+
break
|
38 |
+
|
39 |
+
for reel_url in reel_urls:
|
40 |
+
shortcode = reel_url.split('/')[-2]
|
41 |
+
post = instaloader.Post.from_shortcode(loader.context, shortcode)
|
42 |
+
loader.download_post(post, target='downloaded_reels')
|
43 |
+
|
44 |
+
# Find the video file name
|
45 |
+
video_files = [f for f in os.listdir('downloaded_reels') if f.endswith('.mp4')]
|
46 |
+
|
47 |
+
if not video_files:
|
48 |
+
raise ValueError("No video file found in the downloaded reels.")
|
49 |
+
|
50 |
+
return [os.path.join('downloaded_reels', video_files[i]) for i in range(0, len(video_files))], reel_urls
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error downloading reels: {e}")
|
54 |
+
return [], []
|
55 |
+
|
56 |
+
|
57 |
+
def parse_query_with_groq(
|
58 |
+
query: str,
|
59 |
+
groq_api_key: str,
|
60 |
+
seed: int = 42,
|
61 |
+
llama_model: str = "llama-3.2-11b-text-preview"
|
62 |
+
) -> Optional[str]:
|
63 |
+
"""
|
64 |
+
Enhanced sentiment analysis with Groq API
|
65 |
+
|
66 |
+
Args:
|
67 |
+
query: Input text for sentiment analysis
|
68 |
+
groq_api_key: API key for Groq
|
69 |
+
seed: Random seed for reproducibility
|
70 |
+
llama_model: Model identifier
|
71 |
+
"""
|
72 |
+
url = "https://api.groq.com/openai/v1/chat/completions"
|
73 |
+
|
74 |
+
# Normalize query
|
75 |
+
#query = ' '.join(query.lower().split())
|
76 |
+
|
77 |
+
headers = {
|
78 |
+
"Authorization": f"Bearer {groq_api_key}",
|
79 |
+
"Content-Type": "application/json"
|
80 |
+
}
|
81 |
+
|
82 |
+
system_message = """You are a precise sentiment analysis assistant.
|
83 |
+
Analyze the user_prompt and provide a JSON-formatted list of objects, where each object contains:
|
84 |
+
- sentiment_score: a float between -1 (very negative) and 1 (very positive)
|
85 |
+
- frame_index: the corresponding frame index
|
86 |
+
|
87 |
+
Strictly follow this JSON format:
|
88 |
+
[
|
89 |
+
{"sentiment_score": <float>, "frame_index": <int>},
|
90 |
+
...
|
91 |
+
]
|
92 |
+
"""
|
93 |
+
|
94 |
+
payload = {
|
95 |
+
"model": llama_model,
|
96 |
+
"response_format": {
|
97 |
+
"type": "json_schema",
|
98 |
+
"json_schema": {
|
99 |
+
"type": "array",
|
100 |
+
"items": {
|
101 |
+
"type": "object",
|
102 |
+
"properties": {
|
103 |
+
"sentiment_score": {"type": "number"},
|
104 |
+
"frame_index": {"type": "integer"}
|
105 |
+
},
|
106 |
+
"required": ["sentiment_score", "frame_index"]
|
107 |
+
}
|
108 |
+
}
|
109 |
+
},
|
110 |
+
"messages": [
|
111 |
+
{"role": "system", "content": system_message},
|
112 |
+
{"role": "user", "content": query}
|
113 |
+
],
|
114 |
+
"temperature": 0,
|
115 |
+
"max_tokens": 300,
|
116 |
+
"seed": seed
|
117 |
+
}
|
118 |
+
|
119 |
+
try:
|
120 |
+
response = requests.post(url, headers=headers, json=payload, timeout=30)
|
121 |
+
response.raise_for_status()
|
122 |
+
print(f"DEBUG : Raw Response is {response}")
|
123 |
+
parsed_response = response.json()['choices'][0]['message']['content']
|
124 |
+
print(f"DEBUG : Raw Response is {parsed_response}")
|
125 |
+
return parsed_response
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Sentiment Analysis Error: {e}")
|
128 |
+
return None
|
129 |
+
|
130 |
+
def extract_frames(video_path, output_folder, fps=1):
|
131 |
+
# Create the output folder if it doesn't exist
|
132 |
+
os.makedirs(output_folder, exist_ok=True)
|
133 |
+
|
134 |
+
# Open the video file
|
135 |
+
cap = cv2.VideoCapture(video_path)
|
136 |
+
|
137 |
+
# Check if the video was opened successfully
|
138 |
+
if not cap.isOpened():
|
139 |
+
print(f"Error: Could not open video file {video_path}")
|
140 |
+
return
|
141 |
+
|
142 |
+
# Get the frames per second of the video
|
143 |
+
video_fps = cap.get(cv2.CAP_PROP_FPS)
|
144 |
+
|
145 |
+
# Calculate the interval between frames to capture based on desired fps
|
146 |
+
frame_interval = int(video_fps / fps)
|
147 |
+
|
148 |
+
count = 0
|
149 |
+
frame_count = 0
|
150 |
+
time_stamps = []
|
151 |
+
|
152 |
+
while True:
|
153 |
+
# Read a frame from the video
|
154 |
+
ret, frame = cap.read()
|
155 |
+
|
156 |
+
# Break the loop if there are no more frames
|
157 |
+
if not ret:
|
158 |
+
break
|
159 |
+
|
160 |
+
# Save every 'frame_interval' frame
|
161 |
+
if count % frame_interval == 0:
|
162 |
+
frame_filename = os.path.join(output_folder, f"image{frame_count}.jpg")
|
163 |
+
cv2.imwrite(frame_filename, frame)
|
164 |
+
print(f"Extracted: {frame_filename}")
|
165 |
+
frame_count += 1
|
166 |
+
time_stamps.append(count/video_fps)
|
167 |
+
|
168 |
+
count += 1
|
169 |
+
|
170 |
+
# Release the video capture object
|
171 |
+
cap.release()
|
172 |
+
print("Frame extraction completed.")
|
173 |
+
return frame_count, time_stamps
|
174 |
+
|
175 |
+
def download_instagram_reel_old(reel_url, username="[email protected]", password="instagram@123"):
|
176 |
+
# Remove previous downloads if they exist
|
177 |
+
os.system("rm -rf downloaded_reels")
|
178 |
+
os.makedirs("downloaded_reels", exist_ok=True)
|
179 |
+
|
180 |
+
# Create an instance of Instaloader
|
181 |
+
print(f"Creating instance of instaloader")
|
182 |
+
loader = instaloader.Instaloader(
|
183 |
+
download_videos=True,
|
184 |
+
download_video_thumbnails=True,
|
185 |
+
download_comments=True
|
186 |
+
)
|
187 |
+
|
188 |
+
try:
|
189 |
+
# Login to Instagram
|
190 |
+
loader.login(username, password)
|
191 |
+
|
192 |
+
# Extract the shortcode from the URL
|
193 |
+
shortcode = reel_url.split('/')[-2]
|
194 |
+
|
195 |
+
# Download the reel using the shortcode
|
196 |
+
post = instaloader.Post.from_shortcode(loader.context, shortcode)
|
197 |
+
loader.download_post(post, target='downloaded_reels')
|
198 |
+
|
199 |
+
# Extract comments
|
200 |
+
comments = post.get_comments()
|
201 |
+
|
202 |
+
print(f"Comments are : {comments}")
|
203 |
+
for comment in comments:
|
204 |
+
print(f"{comment.owner.username}: {comment.text}")
|
205 |
+
|
206 |
+
# Find the video file name
|
207 |
+
video_files = [f for f in os.listdir('downloaded_reels') if f.endswith('.mp4')]
|
208 |
+
|
209 |
+
if not video_files:
|
210 |
+
raise ValueError("No video file found in the downloaded reels.")
|
211 |
+
|
212 |
+
return os.path.join('downloaded_reels', video_files[0])
|
213 |
+
|
214 |
+
except Exception as e:
|
215 |
+
print(f"Error downloading reel: {e}")
|
216 |
+
return None
|
217 |
+
|
218 |
+
def analyze_frames_with_florence(image_folder, timestamps):
|
219 |
+
# Set up device and dtype
|
220 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
221 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
222 |
+
|
223 |
+
# Load Florence-2 model
|
224 |
+
model = AutoModelForCausalLM.from_pretrained(
|
225 |
+
"microsoft/Florence-2-large",
|
226 |
+
torch_dtype=torch_dtype,
|
227 |
+
trust_remote_code=True
|
228 |
+
).to(device)
|
229 |
+
|
230 |
+
processor = AutoProcessor.from_pretrained(
|
231 |
+
"microsoft/Florence-2-large",
|
232 |
+
trust_remote_code=True
|
233 |
+
)
|
234 |
+
|
235 |
+
prompt = "<DETAILED_CAPTION>"
|
236 |
+
|
237 |
+
# Collect frame analysis results
|
238 |
+
frame_analyses = []
|
239 |
+
|
240 |
+
# Iterate through all images in the specified folder
|
241 |
+
N = len(os.listdir(image_folder)) # Count number of images in the folder
|
242 |
+
|
243 |
+
for i in range(N):
|
244 |
+
image_path = os.path.join(image_folder, f"image{i}.jpg")
|
245 |
+
image = Image.open(image_path)
|
246 |
+
|
247 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
248 |
+
|
249 |
+
generated_ids = model.generate(
|
250 |
+
input_ids=inputs["input_ids"],
|
251 |
+
pixel_values=inputs["pixel_values"],
|
252 |
+
max_new_tokens=1024,
|
253 |
+
num_beams=3,
|
254 |
+
do_sample=False
|
255 |
+
)
|
256 |
+
|
257 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
258 |
+
|
259 |
+
parsed_answer = processor.post_process_generation(
|
260 |
+
generated_text,
|
261 |
+
task=prompt,
|
262 |
+
image_size=(image.width, image.height)
|
263 |
+
)
|
264 |
+
|
265 |
+
frame_analyses.append({
|
266 |
+
'Frame_Index': i,
|
267 |
+
'Caption': parsed_answer
|
268 |
+
})
|
269 |
+
print(f"Frame {i}, TimeStamp {timestamps[i]} sec : {parsed_answer}")
|
270 |
+
|
271 |
+
return frame_analyses
|
272 |
+
|
273 |
+
def main():
|
274 |
+
# Specify the URL of the reel
|
275 |
+
reel_url = "https://www.instagram.com/purnagummies/reel/C7RRVstqtwY/"
|
276 |
+
|
277 |
+
fps = 0.5
|
278 |
+
|
279 |
+
# Download the reel
|
280 |
+
|
281 |
+
st.title("BrandScan")
|
282 |
+
|
283 |
+
hashtag = st.text_input("Enter the hashtag (without #):", "purnagummies")
|
284 |
+
|
285 |
+
if st.button("Download Reels"):
|
286 |
+
if hashtag:
|
287 |
+
with st.spinner("Downloading reels..."):
|
288 |
+
video_paths, reel_urls = download_instagram_reels(hashtag)
|
289 |
+
if reel_urls:
|
290 |
+
st.success(f"Downloaded {len(video_paths)} reels:")
|
291 |
+
for url in reel_urls:
|
292 |
+
st.write(url)
|
293 |
+
else:
|
294 |
+
st.error("No reels found or an error occurred.")
|
295 |
+
else:
|
296 |
+
st.error("Please enter a valid hashtag.")
|
297 |
+
|
298 |
+
#video_path = download_instagram_reel(reel_urls[0])
|
299 |
+
|
300 |
+
if len(video_paths) == 0:
|
301 |
+
print("Failed to download the reel.")
|
302 |
+
return
|
303 |
+
|
304 |
+
#video_path
|
305 |
+
video_path = video_paths[0]
|
306 |
+
|
307 |
+
# Collect images from the video
|
308 |
+
image_folder = "downloaded_reels/images"
|
309 |
+
os.makedirs(image_folder, exist_ok=True)
|
310 |
+
|
311 |
+
# Extract frames from the video
|
312 |
+
N, timestamps = extract_frames(video_path, image_folder, fps)
|
313 |
+
|
314 |
+
print(f"Analyzing video {video_path} with {N} frames extracted at {fps} frames per second")
|
315 |
+
# Analyze frames with Florence-2
|
316 |
+
frame_analyses = analyze_frames_with_florence(image_folder, timestamps)
|
317 |
+
|
318 |
+
# Optional: You can further process or store the frame_analyses as needed
|
319 |
+
print("Frame analysis completed.")
|
320 |
+
|
321 |
+
frame_analyses_str = "<Frame_Index>; <Description>\n"
|
322 |
+
for item in frame_analyses:
|
323 |
+
frame_analyses_str += item['Frame_Index'] + "; " + item['Caption'] + "\n"
|
324 |
+
|
325 |
+
print(frame_analyses_str)
|
326 |
+
sentiment_analysis = parse_query_with_groq(frame_analyses_str, os.getenv("GROQ_API_KEY"))
|
327 |
+
|
328 |
+
print("Sentiment Analysis on the video:")
|
329 |
+
print(sentiment_analysis)
|
330 |
+
|
331 |
+
if __name__ == "__main__":
|
332 |
+
main()
|