Spaces:
Runtime error
Runtime error
shivangibithel
commited on
Commit
·
dec5315
1
Parent(s):
a848b0f
Update app.py
Browse files
app.py
CHANGED
@@ -5,30 +5,11 @@ import torch
|
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import faiss
|
7 |
import numpy as np
|
8 |
-
import wget
|
9 |
from PIL import Image
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
import json
|
12 |
-
from zipfile import ZipFile
|
13 |
import zipfile
|
14 |
|
15 |
-
# Load the pre-trained sentence encoder
|
16 |
-
model_name = "sentence-transformers/all-distilroberta-v1"
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
-
model = SentenceTransformer(model_name)
|
19 |
-
|
20 |
-
# Define the path to the zip folder containing the images
|
21 |
-
zip_path = "Images.zip"
|
22 |
-
|
23 |
-
# Open the zip folder
|
24 |
-
zip_file = zipfile.ZipFile(zip_path)
|
25 |
-
|
26 |
-
vectors = np.load("./sbert_text_features.npy")
|
27 |
-
vector_dimension = vectors.shape[1]
|
28 |
-
index = faiss.IndexFlatL2(vector_dimension)
|
29 |
-
faiss.normalize_L2(vectors)
|
30 |
-
index.add(vectors)
|
31 |
-
|
32 |
# Map the image ids to the corresponding image URLs
|
33 |
image_map_name = 'captions.json'
|
34 |
|
@@ -37,8 +18,20 @@ with open(image_map_name, 'r') as f:
|
|
37 |
|
38 |
image_list = list(caption_dict.keys())
|
39 |
caption_list = list(caption_dict.values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
def search(query, k=
|
42 |
# Encode the query
|
43 |
query_embedding = model.encode(query)
|
44 |
query_vector = np.array([query_embedding])
|
|
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import faiss
|
7 |
import numpy as np
|
|
|
8 |
from PIL import Image
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
import json
|
|
|
11 |
import zipfile
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Map the image ids to the corresponding image URLs
|
14 |
image_map_name = 'captions.json'
|
15 |
|
|
|
18 |
|
19 |
image_list = list(caption_dict.keys())
|
20 |
caption_list = list(caption_dict.values())
|
21 |
+
zip_path = "Images.zip"
|
22 |
+
zip_file = zipfile.ZipFile(zip_path)
|
23 |
+
|
24 |
+
model_name = "sentence-transformers/all-distilroberta-v1"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = SentenceTransformer(model_name)
|
27 |
+
vectors = model.encode(caption_list)
|
28 |
+
# vectors = np.load("./sbert_text_features.npy")
|
29 |
+
vector_dimension = vectors.shape[1]
|
30 |
+
index = faiss.IndexFlatL2(vector_dimension)
|
31 |
+
faiss.normalize_L2(vectors)
|
32 |
+
index.add(vectors)
|
33 |
|
34 |
+
def search(query, k=4):
|
35 |
# Encode the query
|
36 |
query_embedding = model.encode(query)
|
37 |
query_vector = np.array([query_embedding])
|