shivangibithel commited on
Commit
dec5315
·
1 Parent(s): a848b0f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -20
app.py CHANGED
@@ -5,30 +5,11 @@ import torch
5
  from transformers import AutoTokenizer, AutoModel
6
  import faiss
7
  import numpy as np
8
- import wget
9
  from PIL import Image
10
  from sentence_transformers import SentenceTransformer
11
  import json
12
- from zipfile import ZipFile
13
  import zipfile
14
 
15
- # Load the pre-trained sentence encoder
16
- model_name = "sentence-transformers/all-distilroberta-v1"
17
- tokenizer = AutoTokenizer.from_pretrained(model_name)
18
- model = SentenceTransformer(model_name)
19
-
20
- # Define the path to the zip folder containing the images
21
- zip_path = "Images.zip"
22
-
23
- # Open the zip folder
24
- zip_file = zipfile.ZipFile(zip_path)
25
-
26
- vectors = np.load("./sbert_text_features.npy")
27
- vector_dimension = vectors.shape[1]
28
- index = faiss.IndexFlatL2(vector_dimension)
29
- faiss.normalize_L2(vectors)
30
- index.add(vectors)
31
-
32
  # Map the image ids to the corresponding image URLs
33
  image_map_name = 'captions.json'
34
 
@@ -37,8 +18,20 @@ with open(image_map_name, 'r') as f:
37
 
38
  image_list = list(caption_dict.keys())
39
  caption_list = list(caption_dict.values())
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
- def search(query, k=5):
42
  # Encode the query
43
  query_embedding = model.encode(query)
44
  query_vector = np.array([query_embedding])
 
5
  from transformers import AutoTokenizer, AutoModel
6
  import faiss
7
  import numpy as np
 
8
  from PIL import Image
9
  from sentence_transformers import SentenceTransformer
10
  import json
 
11
  import zipfile
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  # Map the image ids to the corresponding image URLs
14
  image_map_name = 'captions.json'
15
 
 
18
 
19
  image_list = list(caption_dict.keys())
20
  caption_list = list(caption_dict.values())
21
+ zip_path = "Images.zip"
22
+ zip_file = zipfile.ZipFile(zip_path)
23
+
24
+ model_name = "sentence-transformers/all-distilroberta-v1"
25
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
26
+ model = SentenceTransformer(model_name)
27
+ vectors = model.encode(caption_list)
28
+ # vectors = np.load("./sbert_text_features.npy")
29
+ vector_dimension = vectors.shape[1]
30
+ index = faiss.IndexFlatL2(vector_dimension)
31
+ faiss.normalize_L2(vectors)
32
+ index.add(vectors)
33
 
34
+ def search(query, k=4):
35
  # Encode the query
36
  query_embedding = model.encode(query)
37
  query_vector = np.array([query_embedding])