Spaces:
Runtime error
Runtime error
import streamlit as st | |
st.set_page_config(page_title='T2I', page_icon="π§", layout='centered') | |
st.title("Text To Image Retrieval for KaggleX BPIOC Mentorship Program") | |
import torch | |
from transformers import AutoTokenizer, AutoModel | |
import faiss | |
import numpy as np | |
from PIL import Image | |
from sentence_transformers import SentenceTransformer | |
import json | |
import zipfile | |
# Map the image ids to the corresponding image URLs | |
image_map_name = 'captions.json' | |
with open(image_map_name, 'r') as f: | |
caption_dict = json.load(f) | |
image_list = list(caption_dict.keys()) | |
caption_list = list(caption_dict.values()) | |
zip_path = "Images.zip" | |
zip_file = zipfile.ZipFile(zip_path) | |
model_name = "sentence-transformers/all-distilroberta-v1" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = SentenceTransformer(model_name) | |
# vectors = model.encode(caption_list) | |
vectors = np.load("./sbert_text_features.npy") | |
vector_dimension = vectors.shape[1] | |
index = faiss.IndexFlatL2(vector_dimension) | |
faiss.normalize_L2(vectors) | |
index.add(vectors) | |
def search(query, k=4): | |
# Encode the query | |
query_embedding = model.encode(query) | |
query_vector = np.array([query_embedding]) | |
faiss.normalize_L2(query_vector) | |
index.nprobe = index.ntotal | |
# Search for the nearest neighbors in the FAISS index | |
D, I = index.search(query_vector, k) | |
# Map the image ids to the corresponding image URLs | |
image_urls = [] | |
for i in I[0]: | |
text_id = i | |
image_id = str(image_list[i]) | |
image_data = zip_file.open("Images/" +image_id) | |
image = Image.open(image_data) | |
st.image(image, width=600) | |
query = st.text_input("Enter your search query here:") | |
if st.button("Search"): | |
if query: | |
search(query) |