Spaces:
Running
on
T4
Running
on
T4
Shivam Mehta
commited on
Commit
·
23f59c4
1
Parent(s):
2f40390
Adding multispeaker support for huggingface space
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from pathlib import Path
|
|
5 |
import gradio as gr
|
6 |
import soundfile as sf
|
7 |
import torch
|
8 |
-
from matcha.cli import (MATCHA_URLS,
|
9 |
get_device, load_matcha, load_vocoder, process_text,
|
10 |
to_waveform)
|
11 |
from matcha.utils.utils import get_user_data_dir, plot_tensor
|
@@ -16,18 +16,57 @@ args = Namespace(
|
|
16 |
cpu=False,
|
17 |
model="matcha_ljspeech",
|
18 |
vocoder="hifigan_T2_v1",
|
19 |
-
spk=
|
20 |
)
|
21 |
|
22 |
-
|
23 |
-
|
|
|
24 |
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
device = get_device(args)
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
@torch.inference_mode()
|
@@ -37,173 +76,246 @@ def process_text_gradio(text):
|
|
37 |
|
38 |
|
39 |
@torch.inference_mode()
|
40 |
-
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
51 |
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
|
52 |
|
53 |
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
54 |
|
55 |
|
56 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
phones, text, text_lengths = process_text_gradio(text)
|
58 |
-
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
|
59 |
return phones, audio, mel_spectrogram
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
|
66 |
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
Note: Synthesis speed may be slower than in our paper due to I/O latency and because this instance runs on CPUs.
|
80 |
-
"""
|
81 |
-
|
82 |
-
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
|
83 |
-
processed_text = gr.State(value=None)
|
84 |
-
processed_text_len = gr.State(value=None)
|
85 |
-
|
86 |
-
with gr.Box():
|
87 |
-
with gr.Row():
|
88 |
-
gr.Markdown(description, scale=3)
|
89 |
-
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
90 |
-
|
91 |
-
with gr.Box():
|
92 |
-
with gr.Row():
|
93 |
-
gr.Markdown("# Text Input")
|
94 |
-
with gr.Row():
|
95 |
-
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
|
96 |
-
|
97 |
-
with gr.Row():
|
98 |
-
gr.Markdown("### Hyper parameters")
|
99 |
-
with gr.Row():
|
100 |
-
n_timesteps = gr.Slider(
|
101 |
-
label="Number of ODE steps",
|
102 |
-
minimum=1,
|
103 |
-
maximum=100,
|
104 |
-
step=1,
|
105 |
-
value=10,
|
106 |
-
interactive=True,
|
107 |
-
)
|
108 |
-
length_scale = gr.Slider(
|
109 |
-
label="Length scale (Speaking rate)",
|
110 |
-
minimum=0.5,
|
111 |
-
maximum=1.5,
|
112 |
-
step=0.05,
|
113 |
-
value=1.0,
|
114 |
-
interactive=True,
|
115 |
-
)
|
116 |
-
mel_temp = gr.Slider(
|
117 |
-
label="Sampling temperature",
|
118 |
-
minimum=0.00,
|
119 |
-
maximum=2.001,
|
120 |
-
step=0.16675,
|
121 |
-
value=0.667,
|
122 |
-
interactive=True,
|
123 |
-
)
|
124 |
-
|
125 |
-
synth_btn = gr.Button("Synthesise")
|
126 |
-
|
127 |
-
with gr.Box():
|
128 |
-
with gr.Row():
|
129 |
-
gr.Markdown("### Phonetised text")
|
130 |
-
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
|
131 |
-
|
132 |
-
with gr.Box():
|
133 |
-
with gr.Row():
|
134 |
-
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
|
135 |
-
|
136 |
-
# with gr.Row():
|
137 |
-
audio = gr.Audio(interactive=False, label="Audio")
|
138 |
|
|
|
|
|
|
|
|
|
|
|
139 |
with gr.Row():
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
156 |
-
4,
|
157 |
-
0.677,
|
158 |
-
1.0,
|
159 |
-
],
|
160 |
-
[
|
161 |
-
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
162 |
-
10,
|
163 |
-
0.677,
|
164 |
-
1.0,
|
165 |
-
],
|
166 |
-
[
|
167 |
-
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
168 |
-
50,
|
169 |
-
0.677,
|
170 |
-
1.0,
|
171 |
-
],
|
172 |
-
[
|
173 |
-
"The narrative of these events is based largely on the recollections of the participants.",
|
174 |
-
10,
|
175 |
-
0.677,
|
176 |
-
1.0,
|
177 |
-
],
|
178 |
-
[
|
179 |
-
"The jury did not believe him, and the verdict was for the defendants.",
|
180 |
-
10,
|
181 |
-
0.677,
|
182 |
-
1.0,
|
183 |
-
],
|
184 |
-
],
|
185 |
-
fn=run_full_synthesis,
|
186 |
-
inputs=[text, n_timesteps, mel_temp, length_scale],
|
187 |
-
outputs=[phonetised_text, audio, mel_spectrogram],
|
188 |
-
cache_examples=True,
|
189 |
)
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
],
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
|
202 |
-
outputs=[audio, mel_spectrogram],
|
203 |
)
|
204 |
|
205 |
-
|
|
|
|
|
|
|
|
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
-
|
209 |
-
main()
|
|
|
5 |
import gradio as gr
|
6 |
import soundfile as sf
|
7 |
import torch
|
8 |
+
from matcha.cli import (MATCHA_URLS, VOCODER_URLS, assert_model_downloaded,
|
9 |
get_device, load_matcha, load_vocoder, process_text,
|
10 |
to_waveform)
|
11 |
from matcha.utils.utils import get_user_data_dir, plot_tensor
|
|
|
16 |
cpu=False,
|
17 |
model="matcha_ljspeech",
|
18 |
vocoder="hifigan_T2_v1",
|
19 |
+
spk=0,
|
20 |
)
|
21 |
|
22 |
+
|
23 |
+
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
|
24 |
+
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
|
25 |
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
26 |
+
RADIO_OPTIONS = {
|
27 |
+
"Multi Speaker (VCTK)": {
|
28 |
+
"model": "matcha_vctk",
|
29 |
+
"vocoder": "hifigan_univ_v1",
|
30 |
+
},
|
31 |
+
"Single Speaker (LJ Speech)": {
|
32 |
+
"model": "matcha_ljspeech",
|
33 |
+
"vocoder": "hifigan_T2_v1",
|
34 |
+
},
|
35 |
+
}
|
36 |
+
|
37 |
+
# Ensure all the required models are downloaded
|
38 |
+
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
|
39 |
+
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
|
40 |
+
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
|
41 |
+
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
|
42 |
+
|
43 |
+
# get device
|
44 |
device = get_device(args)
|
45 |
|
46 |
+
# Load default models
|
47 |
+
matcha_ljspeech = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
|
48 |
+
hifigan_T2_v1, hifigan_T2_v1_denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
|
49 |
+
|
50 |
+
matcha_vctk = load_matcha("matcha_vctk", MATCHA_TTS_LOC("matcha_vctk"), device)
|
51 |
+
hifigan_univ_v1, hifigan_univ_v1_denoiser = load_vocoder("hifigan_univ_v1", VOCODER_LOC("hifigan_univ_v1"), device)
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
def load_model_ui(model_type, textbox):
|
56 |
+
model_name = RADIO_OPTIONS[model_type]["model"]
|
57 |
+
|
58 |
+
if model_name == "matcha_ljspeech":
|
59 |
+
spk_slider = gr.update(visible=False, value=-1)
|
60 |
+
single_speaker_examples = gr.update(visible=True)
|
61 |
+
multi_speaker_examples = gr.update(visible=False)
|
62 |
+
length_scale = gr.update(value=0.95)
|
63 |
+
else:
|
64 |
+
spk_slider = gr.update(visible=True, value=0)
|
65 |
+
single_speaker_examples = gr.update(visible=False)
|
66 |
+
multi_speaker_examples = gr.update(visible=True)
|
67 |
+
length_scale = gr.update(value=0.85)
|
68 |
+
|
69 |
+
return textbox, gr.update(interactive=True), spk_slider, single_speaker_examples, multi_speaker_examples, length_scale
|
70 |
|
71 |
|
72 |
@torch.inference_mode()
|
|
|
76 |
|
77 |
|
78 |
@torch.inference_mode()
|
79 |
+
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
|
80 |
+
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
81 |
+
|
82 |
+
if spk is None:
|
83 |
+
output = matcha_ljspeech.synthesise(
|
84 |
+
text,
|
85 |
+
text_length,
|
86 |
+
n_timesteps=n_timesteps,
|
87 |
+
temperature=temperature,
|
88 |
+
spks=None,
|
89 |
+
length_scale=length_scale,
|
90 |
+
)
|
91 |
+
output["waveform"] = to_waveform(output["mel"], hifigan_T2_v1, hifigan_T2_v1_denoiser)
|
92 |
+
else:
|
93 |
+
output = matcha_vctk.synthesise(
|
94 |
+
text,
|
95 |
+
text_length,
|
96 |
+
n_timesteps=n_timesteps,
|
97 |
+
temperature=temperature,
|
98 |
+
spks=spk,
|
99 |
+
length_scale=length_scale,
|
100 |
+
)
|
101 |
+
output["waveform"] = to_waveform(output["mel"], hifigan_univ_v1, hifigan_univ_v1_denoiser)
|
102 |
+
|
103 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
104 |
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
|
105 |
|
106 |
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
107 |
|
108 |
|
109 |
+
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
|
110 |
+
phones, text, text_lengths = process_text_gradio(text)
|
111 |
+
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
112 |
+
return phones, audio, mel_spectrogram
|
113 |
+
|
114 |
+
|
115 |
+
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
|
116 |
phones, text, text_lengths = process_text_gradio(text)
|
117 |
+
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
118 |
return phones, audio, mel_spectrogram
|
119 |
|
120 |
|
121 |
+
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
|
122 |
+
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
|
123 |
+
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
|
|
|
124 |
|
125 |
|
126 |
+
* Is probabilistic
|
127 |
+
* Has compact memory footprint
|
128 |
+
* Sounds highly natural
|
129 |
+
* Is very fast to synthesise from
|
130 |
|
131 |
|
132 |
+
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
|
133 |
+
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models.
|
134 |
|
135 |
+
Cached examples are available at the bottom of the page.
|
136 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
|
139 |
+
processed_text = gr.State(value=None)
|
140 |
+
processed_text_len = gr.State(value=None)
|
141 |
+
|
142 |
+
with gr.Box():
|
143 |
with gr.Row():
|
144 |
+
gr.Markdown(description, scale=3)
|
145 |
+
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
146 |
+
|
147 |
+
with gr.Box():
|
148 |
+
radio_options = list(RADIO_OPTIONS.keys())
|
149 |
+
model_type = gr.Radio(
|
150 |
+
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
|
151 |
+
)
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
gr.Markdown("# Text Input")
|
155 |
+
with gr.Row():
|
156 |
+
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
|
157 |
+
spk_slider = gr.Slider(
|
158 |
+
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
)
|
160 |
|
161 |
+
with gr.Row():
|
162 |
+
gr.Markdown("### Hyper parameters")
|
163 |
+
with gr.Row():
|
164 |
+
n_timesteps = gr.Slider(
|
165 |
+
label="Number of ODE steps",
|
166 |
+
minimum=1,
|
167 |
+
maximum=100,
|
168 |
+
step=1,
|
169 |
+
value=10,
|
170 |
+
interactive=True,
|
171 |
+
)
|
172 |
+
length_scale = gr.Slider(
|
173 |
+
label="Length scale (Speaking rate)",
|
174 |
+
minimum=0.5,
|
175 |
+
maximum=1.5,
|
176 |
+
step=0.05,
|
177 |
+
value=1.0,
|
178 |
+
interactive=True,
|
179 |
+
)
|
180 |
+
mel_temp = gr.Slider(
|
181 |
+
label="Sampling temperature",
|
182 |
+
minimum=0.00,
|
183 |
+
maximum=2.001,
|
184 |
+
step=0.16675,
|
185 |
+
value=0.667,
|
186 |
+
interactive=True,
|
187 |
+
)
|
188 |
+
|
189 |
+
synth_btn = gr.Button("Synthesise")
|
190 |
+
|
191 |
+
with gr.Box():
|
192 |
+
with gr.Row():
|
193 |
+
gr.Markdown("### Phonetised text")
|
194 |
+
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
|
195 |
+
|
196 |
+
with gr.Box():
|
197 |
+
with gr.Row():
|
198 |
+
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
|
199 |
+
|
200 |
+
# with gr.Row():
|
201 |
+
audio = gr.Audio(interactive=False, label="Audio")
|
202 |
+
|
203 |
+
with gr.Row(visible=False) as example_row_lj_speech:
|
204 |
+
examples = gr.Examples( # pylint: disable=unused-variable
|
205 |
+
examples=[
|
206 |
+
[
|
207 |
+
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
|
208 |
+
50,
|
209 |
+
0.677,
|
210 |
+
0.95,
|
211 |
+
],
|
212 |
+
[
|
213 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
214 |
+
2,
|
215 |
+
0.677,
|
216 |
+
0.95,
|
217 |
+
],
|
218 |
+
[
|
219 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
220 |
+
4,
|
221 |
+
0.677,
|
222 |
+
0.95,
|
223 |
+
],
|
224 |
+
[
|
225 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
226 |
+
10,
|
227 |
+
0.677,
|
228 |
+
0.95,
|
229 |
+
],
|
230 |
+
[
|
231 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
232 |
+
50,
|
233 |
+
0.677,
|
234 |
+
0.95,
|
235 |
+
],
|
236 |
+
[
|
237 |
+
"The narrative of these events is based largely on the recollections of the participants.",
|
238 |
+
10,
|
239 |
+
0.677,
|
240 |
+
0.95,
|
241 |
+
],
|
242 |
+
[
|
243 |
+
"The jury did not believe him, and the verdict was for the defendants.",
|
244 |
+
10,
|
245 |
+
0.677,
|
246 |
+
0.95,
|
247 |
+
],
|
248 |
+
],
|
249 |
+
fn=ljspeech_example_cacher,
|
250 |
+
inputs=[text, n_timesteps, mel_temp, length_scale],
|
251 |
+
outputs=[phonetised_text, audio, mel_spectrogram],
|
252 |
+
cache_examples=True,
|
253 |
+
)
|
254 |
+
|
255 |
+
with gr.Row() as example_row_multispeaker:
|
256 |
+
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
|
257 |
+
examples=[
|
258 |
+
[
|
259 |
+
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
|
260 |
+
10,
|
261 |
+
0.677,
|
262 |
+
0.85,
|
263 |
+
0,
|
264 |
+
],
|
265 |
+
[
|
266 |
+
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
|
267 |
+
10,
|
268 |
+
0.677,
|
269 |
+
0.85,
|
270 |
+
16,
|
271 |
+
],
|
272 |
+
[
|
273 |
+
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
|
274 |
+
50,
|
275 |
+
0.677,
|
276 |
+
0.85,
|
277 |
+
44,
|
278 |
+
],
|
279 |
+
[
|
280 |
+
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
|
281 |
+
50,
|
282 |
+
0.677,
|
283 |
+
0.85,
|
284 |
+
45,
|
285 |
+
],
|
286 |
+
[
|
287 |
+
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
|
288 |
+
4,
|
289 |
+
0.677,
|
290 |
+
0.85,
|
291 |
+
58,
|
292 |
+
],
|
293 |
],
|
294 |
+
fn=multispeaker_example_cacher,
|
295 |
+
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
|
296 |
+
outputs=[phonetised_text, audio, mel_spectrogram],
|
297 |
+
cache_examples=True,
|
298 |
+
label="Multi Speaker Examples",
|
|
|
|
|
299 |
)
|
300 |
|
301 |
+
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
|
302 |
+
load_model_ui,
|
303 |
+
inputs=[model_type, text],
|
304 |
+
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
|
305 |
+
)
|
306 |
|
307 |
+
synth_btn.click(
|
308 |
+
fn=process_text_gradio,
|
309 |
+
inputs=[
|
310 |
+
text,
|
311 |
+
],
|
312 |
+
outputs=[phonetised_text, processed_text, processed_text_len],
|
313 |
+
api_name="matcha_tts",
|
314 |
+
queue=True,
|
315 |
+
).then(
|
316 |
+
fn=synthesise_mel,
|
317 |
+
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
|
318 |
+
outputs=[audio, mel_spectrogram],
|
319 |
+
)
|
320 |
|
321 |
+
demo.queue(concurrency_count=5).launch(debug=True)
|
|