Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from ultralytics import YOLO | |
import numpy as np | |
import json | |
from PIL import Image, ImageDraw | |
# Define keypoints we need for rigging | |
KEYPOINTS = { | |
0: {"name": "chin (nose)"}, | |
7: {"name": "left_elbow"}, | |
8: {"name": "right_elbow"}, | |
9: {"name": "left_wrist"}, | |
10: {"name": "right_wrist"}, | |
13: {"name": "left_knee"}, | |
14: {"name": "right_knee"} | |
} | |
# Initialize model | |
model = None | |
def load_model(): | |
"""Load the YOLO pose estimation model""" | |
global model | |
if model is None: | |
model_path = 'yolov8s-pose.pt' | |
if os.path.exists(model_path): | |
try: | |
model = YOLO(model_path) | |
print("Model loaded successfully") | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
model = None | |
else: | |
print(f"Model file not found: {model_path}") | |
return model | |
def process_image(input_image): | |
""" | |
Process an image for pose estimation and return keypoint coordinates | |
Args: | |
input_image: Input image (PIL Image or numpy array) | |
Returns: | |
Tuple of (visualization image, JSON results string) | |
""" | |
# Load model if not already loaded | |
if load_model() is None: | |
return None, json.dumps({"error": "Model not available"}) | |
try: | |
# Convert to PIL if needed | |
if not isinstance(input_image, np.ndarray): | |
input_image = np.array(input_image) | |
# Run inference | |
results = model.predict(input_image, verbose=False) | |
# Process keypoint data | |
keypoint_data = {} | |
if not results or len(results) == 0: | |
return input_image, json.dumps({"error": "No pose detection results found"}) | |
result = results[0] | |
if not hasattr(result, "keypoints") or result.keypoints is None: | |
return input_image, json.dumps({"error": "No keypoints detected in the image"}) | |
try: | |
keypoints = result.keypoints.data.cpu().numpy() | |
except AttributeError: | |
return input_image, json.dumps({"error": "Error accessing keypoints data"}) | |
if len(keypoints) == 0: | |
return input_image, json.dumps({"error": "No people detected in the image"}) | |
# Get first person's keypoints | |
kp = keypoints[0] | |
# Extract keypoints | |
for idx, keypoint_info in KEYPOINTS.items(): | |
if idx < len(kp) and kp[idx][2] > 0.5: # Confidence threshold | |
x, y, conf = kp[idx] | |
keypoint_data[keypoint_info["name"]] = { | |
"x": int(x), | |
"y": int(y), | |
"confidence": float(conf) | |
} | |
# Add groin point (midpoint between points 11 and 12) | |
if len(kp) > 12 and kp[11][2] > 0.5 and kp[12][2] > 0.5: | |
groin_x = int((kp[11][0] + kp[12][0]) / 2) | |
groin_y = int((kp[11][1] + kp[12][1]) / 2) | |
groin_conf = (float(kp[11][2]) + float(kp[12][2])) / 2 | |
keypoint_data["groin"] = { | |
"x": groin_x, | |
"y": groin_y, | |
"confidence": groin_conf | |
} | |
# Create visualization image | |
vis_image = Image.fromarray(input_image.copy()) | |
draw = ImageDraw.Draw(vis_image) | |
# Draw keypoints | |
for point_name, point_data in keypoint_data.items(): | |
x, y = point_data["x"], point_data["y"] | |
# Draw a circle at each keypoint | |
radius = 5 | |
draw.ellipse( | |
[(x - radius, y - radius), (x + radius, y + radius)], | |
fill="red" | |
) | |
# Add text label | |
draw.text((x + 10, y), point_name, fill="black") | |
return np.array(vis_image), json.dumps({"keypoints": keypoint_data}, indent=2) | |
except Exception as e: | |
return input_image, json.dumps({"error": f"Error processing image: {str(e)}"}) | |
# Create Gradio interface | |
def create_gradio_app(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# YOLO Pose Estimation API") | |
gr.Markdown("Upload an image to detect pose keypoints") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="numpy", label="Input Image") | |
submit_btn = gr.Button("Process Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Visualization") | |
output_json = gr.JSON(label="Keypoint Data") | |
submit_btn.click( | |
fn=process_image, | |
inputs=[input_image], | |
outputs=[output_image, output_json] | |
) | |
# Add API documentation | |
gr.Markdown(""" | |
## API Usage | |
This Gradio app also provides a REST API endpoint at `/api/predict`. | |
Example usage: | |
```python | |
import requests | |
# Send a POST request to the API endpoint | |
response = requests.post( | |
"YOUR_HUGGINGFACE_SPACE_URL/api/predict", | |
files={"input_image": open("image.jpg", "rb")} | |
) | |
# Process results | |
if response.status_code == 200: | |
results = response.json() | |
keypoints = results.get("keypoints", {}) | |
print(keypoints) | |
else: | |
print(f"Error: {response.text}") | |
``` | |
""") | |
return demo | |
demo = create_gradio_app() | |
# Launch app | |
if __name__ == "__main__": | |
demo.launch() | |
else: | |
# For Hugging Face Spaces | |
demo.launch(share=False) |