Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from ultralytics import YOLO
|
4 |
+
import numpy as np
|
5 |
+
import json
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
|
8 |
+
# Define keypoints we need for rigging
|
9 |
+
KEYPOINTS = {
|
10 |
+
0: {"name": "chin (nose)"},
|
11 |
+
7: {"name": "left_elbow"},
|
12 |
+
8: {"name": "right_elbow"},
|
13 |
+
9: {"name": "left_wrist"},
|
14 |
+
10: {"name": "right_wrist"},
|
15 |
+
13: {"name": "left_knee"},
|
16 |
+
14: {"name": "right_knee"}
|
17 |
+
}
|
18 |
+
|
19 |
+
# Initialize model
|
20 |
+
model = None
|
21 |
+
|
22 |
+
def load_model():
|
23 |
+
"""Load the YOLO pose estimation model"""
|
24 |
+
global model
|
25 |
+
if model is None:
|
26 |
+
model_path = 'yolov8s-pose.pt'
|
27 |
+
if os.path.exists(model_path):
|
28 |
+
try:
|
29 |
+
model = YOLO(model_path)
|
30 |
+
print("Model loaded successfully")
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error loading model: {e}")
|
33 |
+
model = None
|
34 |
+
else:
|
35 |
+
print(f"Model file not found: {model_path}")
|
36 |
+
return model
|
37 |
+
|
38 |
+
def process_image(input_image):
|
39 |
+
"""
|
40 |
+
Process an image for pose estimation and return keypoint coordinates
|
41 |
+
|
42 |
+
Args:
|
43 |
+
input_image: Input image (PIL Image or numpy array)
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
Tuple of (visualization image, JSON results string)
|
47 |
+
"""
|
48 |
+
# Load model if not already loaded
|
49 |
+
if load_model() is None:
|
50 |
+
return None, json.dumps({"error": "Model not available"})
|
51 |
+
|
52 |
+
try:
|
53 |
+
# Convert to PIL if needed
|
54 |
+
if not isinstance(input_image, np.ndarray):
|
55 |
+
input_image = np.array(input_image)
|
56 |
+
|
57 |
+
# Run inference
|
58 |
+
results = model.predict(input_image, verbose=False)
|
59 |
+
|
60 |
+
# Process keypoint data
|
61 |
+
keypoint_data = {}
|
62 |
+
|
63 |
+
if not results or len(results) == 0:
|
64 |
+
return input_image, json.dumps({"error": "No pose detection results found"})
|
65 |
+
|
66 |
+
result = results[0]
|
67 |
+
|
68 |
+
if not hasattr(result, "keypoints") or result.keypoints is None:
|
69 |
+
return input_image, json.dumps({"error": "No keypoints detected in the image"})
|
70 |
+
|
71 |
+
try:
|
72 |
+
keypoints = result.keypoints.data.cpu().numpy()
|
73 |
+
except AttributeError:
|
74 |
+
return input_image, json.dumps({"error": "Error accessing keypoints data"})
|
75 |
+
|
76 |
+
if len(keypoints) == 0:
|
77 |
+
return input_image, json.dumps({"error": "No people detected in the image"})
|
78 |
+
|
79 |
+
# Get first person's keypoints
|
80 |
+
kp = keypoints[0]
|
81 |
+
|
82 |
+
# Extract keypoints
|
83 |
+
for idx, keypoint_info in KEYPOINTS.items():
|
84 |
+
if idx < len(kp) and kp[idx][2] > 0.5: # Confidence threshold
|
85 |
+
x, y, conf = kp[idx]
|
86 |
+
keypoint_data[keypoint_info["name"]] = {
|
87 |
+
"x": int(x),
|
88 |
+
"y": int(y),
|
89 |
+
"confidence": float(conf)
|
90 |
+
}
|
91 |
+
|
92 |
+
# Add groin point (midpoint between points 11 and 12)
|
93 |
+
if len(kp) > 12 and kp[11][2] > 0.5 and kp[12][2] > 0.5:
|
94 |
+
groin_x = int((kp[11][0] + kp[12][0]) / 2)
|
95 |
+
groin_y = int((kp[11][1] + kp[12][1]) / 2)
|
96 |
+
groin_conf = (float(kp[11][2]) + float(kp[12][2])) / 2
|
97 |
+
keypoint_data["groin"] = {
|
98 |
+
"x": groin_x,
|
99 |
+
"y": groin_y,
|
100 |
+
"confidence": groin_conf
|
101 |
+
}
|
102 |
+
|
103 |
+
# Create visualization image
|
104 |
+
vis_image = Image.fromarray(input_image.copy())
|
105 |
+
draw = ImageDraw.Draw(vis_image)
|
106 |
+
|
107 |
+
# Draw keypoints
|
108 |
+
for point_name, point_data in keypoint_data.items():
|
109 |
+
x, y = point_data["x"], point_data["y"]
|
110 |
+
# Draw a circle at each keypoint
|
111 |
+
radius = 5
|
112 |
+
draw.ellipse(
|
113 |
+
[(x - radius, y - radius), (x + radius, y + radius)],
|
114 |
+
fill="red"
|
115 |
+
)
|
116 |
+
# Add text label
|
117 |
+
draw.text((x + 10, y), point_name, fill="black")
|
118 |
+
|
119 |
+
return np.array(vis_image), json.dumps({"keypoints": keypoint_data}, indent=2)
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
return input_image, json.dumps({"error": f"Error processing image: {str(e)}"})
|
123 |
+
|
124 |
+
# Create Gradio interface
|
125 |
+
def create_gradio_app():
|
126 |
+
with gr.Blocks() as demo:
|
127 |
+
gr.Markdown("# YOLO Pose Estimation API")
|
128 |
+
gr.Markdown("Upload an image to detect pose keypoints")
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column():
|
132 |
+
input_image = gr.Image(type="numpy", label="Input Image")
|
133 |
+
submit_btn = gr.Button("Process Image")
|
134 |
+
|
135 |
+
with gr.Column():
|
136 |
+
output_image = gr.Image(label="Visualization")
|
137 |
+
output_json = gr.JSON(label="Keypoint Data")
|
138 |
+
|
139 |
+
submit_btn.click(
|
140 |
+
fn=process_image,
|
141 |
+
inputs=[input_image],
|
142 |
+
outputs=[output_image, output_json]
|
143 |
+
)
|
144 |
+
|
145 |
+
# Add API documentation
|
146 |
+
gr.Markdown("""
|
147 |
+
## API Usage
|
148 |
+
|
149 |
+
This Gradio app also provides a REST API endpoint at `/api/predict`.
|
150 |
+
|
151 |
+
Example usage:
|
152 |
+
```python
|
153 |
+
import requests
|
154 |
+
|
155 |
+
# Send a POST request to the API endpoint
|
156 |
+
response = requests.post(
|
157 |
+
"YOUR_HUGGINGFACE_SPACE_URL/api/predict",
|
158 |
+
files={"input_image": open("image.jpg", "rb")}
|
159 |
+
)
|
160 |
+
|
161 |
+
# Process results
|
162 |
+
if response.status_code == 200:
|
163 |
+
results = response.json()
|
164 |
+
keypoints = results.get("keypoints", {})
|
165 |
+
print(keypoints)
|
166 |
+
else:
|
167 |
+
print(f"Error: {response.text}")
|
168 |
+
```
|
169 |
+
""")
|
170 |
+
|
171 |
+
return demo
|
172 |
+
|
173 |
+
demo = create_gradio_app()
|
174 |
+
|
175 |
+
# Launch app
|
176 |
+
if __name__ == "__main__":
|
177 |
+
demo.launch()
|
178 |
+
else:
|
179 |
+
# For Hugging Face Spaces
|
180 |
+
demo.launch(share=False)
|