shigeru saito commited on
Commit
0e519fe
·
1 Parent(s): c9a66e4

チャット形式に変更

Browse files
Files changed (3) hide show
  1. app.py +42 -107
  2. llm/mock.py +50 -0
  3. llm/openai.py +124 -0
app.py CHANGED
@@ -1,116 +1,51 @@
1
- import codecs
2
- import json
3
- import time
4
- import openai
5
  import gradio as gr
6
- import os
7
- from dotenv import load_dotenv
8
 
9
- # OpenAI API キーの設定
10
- load_dotenv()
11
- openai.api_key = os.getenv('OPENAI_API_KEY')
12
- assistant_id = os.getenv('OPENAI_ASSISTANT_ID')
13
 
14
- import json
 
15
 
16
- assistant = None
17
- client = openai.OpenAI()
18
-
19
- print("### Step 1: Get the Assistant's ID ###")
20
- assistant = client.beta.assistants.retrieve(assistant_id)
21
- print(assistant)
22
- assistant_name = assistant.name
23
- assistant_description = assistant.description
24
- assistant_model = assistant.model
25
- assistant_tools = assistant.tools
26
- assistant_file_ids = assistant.file_ids
27
-
28
- if assistant_description is None:
29
-
30
- assistant_description += f"このアシスタントは、OpenAI APIで {assistant_model} を使用して作成されました。"
31
 
32
  def assistant_response(prompt):
33
-
34
- "### Step 2: Create a Thread ###"
35
- empty_thread = client.beta.threads.create()
36
- thread_id = empty_thread.id
37
- print(empty_thread)
38
-
39
- print("### Step 3: Add a Message to the Thread ###")
40
- thread = client.beta.threads.retrieve(thread_id)
41
- print(thread)
42
-
43
- print("### Step 4: Add a Message to the Thread ###")
44
- thread_message = client.beta.threads.messages.create(
45
- thread_id,
46
- role="user",
47
- content=prompt,
48
- )
49
- message_id = thread_message.id
50
- print(thread_message)
51
-
52
- print("### Step 5: Retrieve the Message ###")
53
- message = client.beta.threads.messages.retrieve(
54
- message_id=message_id,
55
- thread_id=thread_id,
56
- )
57
- print(message)
58
-
59
- print("### Step 6: Run the Assistant ###")
60
- run = client.beta.threads.runs.create(
61
- thread_id=thread.id,
62
- assistant_id=assistant.id,
63
- )
64
-
65
- print("### Step 7: Wait for the Assistant to Finish ###")
66
- def wait_on_run(run, thread):
67
- while run.status == "queued" or run.status == "in_progress":
68
- run = client.beta.threads.runs.retrieve(
69
- thread_id=thread.id,
70
- run_id=run.id,
71
- )
72
- time.sleep(0.5)
73
- return run
74
-
75
- run = wait_on_run(run, thread)
76
- print(run)
77
-
78
- print("### Step 8: Retrieve the Messages ###")
79
- messages = client.beta.threads.messages.list(
80
- thread_id=thread.id
81
- )
82
-
83
- messages_str = json.dumps(messages.dict(), indent=2)
84
- print(codecs.decode(messages_str, 'unicode-escape'))
85
-
86
- print("### Step 9: Retrieve the Assistant's Response ###")
87
- answers = []
88
- for message in messages.data:
89
- if message.role == "assistant":
90
- if message.content[0].type == "text":
91
- answers.append(message.content[0].text.value + "\n\n")
92
- else:
93
- answers.append("Content is not text.\n\n")
94
- elif message.role == "user":
95
- break
96
-
97
- # answersを逆順にする
98
- answers.reverse()
99
 
100
- return "".join(answers)
101
-
102
-
103
- title = "OpenAPI Assistant API: " + assistant_name
104
- description = assistant_description
105
 
106
- # Gradio インターフェースの設定
107
- iface = gr.Interface(
108
- title=title,
109
- description=description,
110
- fn=assistant_response,
111
- inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
112
- outputs=gr.Textbox(),
113
- )
114
 
115
- # アプリケーションの起動
116
- iface.launch()
 
 
 
 
 
1
  import gradio as gr
2
+ import random
 
3
 
4
+ from llm.openai import Llm
 
 
 
5
 
6
+ # # mock for testing
7
+ # from llm.mock import Llm
8
 
9
+ llm = Llm()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  def assistant_response(prompt):
12
+ answer = llm.chatcompletion(prompt)
13
+ return answer
14
+
15
+ def respond(message, chat_history):
16
+ answer = llm.chatcompletion(message)
17
+ print(answer)
18
+ chat_history.append((message, answer))
19
+ return "", chat_history
20
+
21
+ title = "OpenAPI Assistant API: " + llm.assistant.name
22
+
23
+ if llm.assistant.description is None:
24
+ model = llm.assistant.model
25
+ description = f"このデモはOpenAPI Assistant APIのデモです。テキストボックスにテキストを入力すると、{model}モデルが応答します。"
26
+ else:
27
+ description = llm.assistant.description
28
+
29
+ # 実行例のリスト (現在使用してない)
30
+ import csv
31
+ examples = []
32
+ with open('flagged/log.csv', 'r', encoding='utf-8') as file:
33
+ reader = csv.DictReader(file)
34
+ examples = [row['prompt'] for row in reader]
35
+
36
+ with gr.Blocks() as demo:
37
+ gr.Markdown(
38
+ f"""
39
+ # {title}
40
+ {description}
41
+ """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
+ chatbot = gr.Chatbot()
44
+ msg = gr.Textbox()
45
+ clear = gr.ClearButton([msg, chatbot])
46
+ examples=examples
 
47
 
48
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
 
 
 
 
 
 
 
49
 
50
+ if __name__ == "__main__":
51
+ demo.launch()
llm/mock.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import codecs
2
+ import json
3
+ import time
4
+ import openai
5
+ import os
6
+ from dotenv import load_dotenv
7
+
8
+ load_dotenv()
9
+
10
+ class Llm:
11
+ def __init__(self):
12
+ print("### Step 1: Get the Assistant's ID ###")
13
+
14
+ # OpenAI API キーの設定
15
+ self.client = openai.OpenAI()
16
+ openai.api_key = os.getenv('OPENAI_API_KEY')
17
+ self.assistant_id = os.getenv('OPENAI_ASSISTANT_ID')
18
+
19
+ self.assistant = self.client.beta.assistants.retrieve(self.assistant_id)
20
+ print(self.assistant)
21
+ assistant_description = self.assistant.description
22
+ self.assistant.model = "mock"
23
+ assistant_model = self.assistant.model
24
+
25
+ if assistant_description is None:
26
+
27
+ assistant_description = f"このアシスタントは、OpenAI APIで {assistant_model} を使用して作成されました。"
28
+
29
+ def setup(self):
30
+ load_dotenv()
31
+ self.api_key = os.getenv('OPENAI_API_KEY')
32
+ self.assistant_id = os.getenv('OPENAI_ASSISTANT_ID')
33
+ self.client = openai.OpenAI()
34
+
35
+ def retrieve_assistant(self):
36
+ self.assistant = self.client.beta.assistants.retrieve(self.assistant_id)
37
+ return self.assistant
38
+
39
+ def chatcompletion(self, prompt):
40
+ import random
41
+ import csv
42
+
43
+ with open('flagged/log.csv', 'r') as file:
44
+ reader = csv.DictReader(file)
45
+ logs = [row for row in reader]
46
+
47
+ random_log = random.choice(logs)
48
+ answer = random_log['output']
49
+
50
+ return answer
llm/openai.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import codecs
2
+ import json
3
+ import time
4
+ import openai
5
+ import os
6
+ from dotenv import load_dotenv
7
+
8
+ load_dotenv()
9
+
10
+ class Llm:
11
+ def __init__(self):
12
+ print("### Step 1: Get the Assistant's ID ###")
13
+
14
+ # OpenAI API キーの設定
15
+ self.client = openai.OpenAI()
16
+ openai.api_key = os.getenv('OPENAI_API_KEY')
17
+ self.assistant_id = os.getenv('OPENAI_ASSISTANT_ID')
18
+
19
+ self.assistant = self.client.beta.assistants.retrieve(self.assistant_id)
20
+ print(self.assistant)
21
+ assistant_description = self.assistant.description
22
+ assistant_model = self.assistant.model
23
+
24
+ if assistant_description is None:
25
+
26
+ assistant_description = f"このアシスタントは、OpenAI APIで {assistant_model} を使用して作成されました。"
27
+
28
+
29
+ def setup(self):
30
+ load_dotenv()
31
+ self.api_key = os.getenv('OPENAI_API_KEY')
32
+ self.assistant_id = os.getenv('OPENAI_ASSISTANT_ID')
33
+ self.client = openai.OpenAI()
34
+
35
+ def retrieve_assistant(self):
36
+ self.assistant = self.client.beta.assistants.retrieve(self.assistant_id)
37
+ return self.assistant
38
+
39
+ # def openai_completion(self, prompt):
40
+ # import random
41
+ # import csv
42
+
43
+ # with open('flagged/log.csv', 'r') as file:
44
+ # reader = csv.DictReader(file)
45
+ # logs = [row for row in reader]
46
+
47
+ # random_log = random.choice(logs)
48
+ # answer = random_log['output']
49
+
50
+ # return answer
51
+
52
+ def chatcompletion(self, prompt):
53
+
54
+ try:
55
+ "### Step 2: Create a Thread ###"
56
+ empty_thread = self.client.beta.threads.create()
57
+ thread_id = empty_thread.id
58
+ print(empty_thread)
59
+
60
+ print("### Step 3: Add a Message to the Thread ###")
61
+ thread = self.client.beta.threads.retrieve(thread_id)
62
+ print(thread)
63
+
64
+ print("### Step 4: Add a Message to the Thread ###")
65
+ thread_message = self.client.beta.threads.messages.create(
66
+ thread_id,
67
+ role="user",
68
+ content=prompt,
69
+ )
70
+ message_id = thread_message.id
71
+ print(thread_message)
72
+
73
+ print("### Step 5: Retrieve the Message ###")
74
+ message = self.client.beta.threads.messages.retrieve(
75
+ message_id=message_id,
76
+ thread_id=thread_id,
77
+ )
78
+ print(message)
79
+
80
+ print("### Step 6: Run the Assistant ###")
81
+ run = self.client.beta.threads.runs.create(
82
+ thread_id=thread.id,
83
+ assistant_id=self.assistant.id,
84
+ )
85
+
86
+ print("### Step 7: Wait for the Assistant to Finish ###")
87
+ def wait_on_run(run, thread):
88
+ while run.status == "queued" or run.status == "in_progress":
89
+ run = self.client.beta.threads.runs.retrieve(
90
+ thread_id=thread.id,
91
+ run_id=run.id,
92
+ )
93
+ time.sleep(0.5)
94
+ return run
95
+
96
+ run = wait_on_run(run, thread)
97
+ print(run)
98
+
99
+ print("### Step 8: Retrieve the Messages ###")
100
+ messages = self.client.beta.threads.messages.list(
101
+ thread_id=thread.id
102
+ )
103
+
104
+ messages_str = json.dumps(messages.dict(), indent=2)
105
+ print(codecs.decode(messages_str, 'unicode-escape'))
106
+
107
+ print("### Step 9: Retrieve the Assistant's Response ###")
108
+ answers = []
109
+ for message in messages.data:
110
+ if message.role == "assistant":
111
+ if message.content[0].type == "text":
112
+ answers.append(message.content[0].text.value + "\n\n")
113
+ else:
114
+ answers.append("Content is not text.\n\n")
115
+ elif message.role == "user":
116
+ break
117
+
118
+ # answersを逆順にする
119
+ answers.reverse()
120
+
121
+ return "".join(answers)
122
+ except Exception as e:
123
+ print(f"スレッドの作成中にエラーが発生しました: {e}")
124
+ raise