speech-analysis / train.py
shibly100's picture
Upload 5 files
b931ae8 verified
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
import numpy as np
import evaluate
# Load dataset
dataset = load_dataset("imdb")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
# Tokenization function
def tokenize_function(example):
return tokenizer(example["text"], padding="max_length", truncation=True)
# Tokenize dataset
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Load model
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
# Load accuracy metric
accuracy = evaluate.load("accuracy")
# Compute metrics function
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return accuracy.compute(predictions=predictions, references=labels)
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=1,
weight_decay=0.01,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"].shuffle(seed=42).select(range(2000)),
eval_dataset=tokenized_datasets["test"].shuffle(seed=42).select(range(1000)),
compute_metrics=compute_metrics,
)
# Train model
trainer.train()