Spaces:
Sleeping
Sleeping
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer | |
from datasets import load_dataset | |
import numpy as np | |
import evaluate | |
# Load dataset | |
dataset = load_dataset("imdb") | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") | |
# Tokenization function | |
def tokenize_function(example): | |
return tokenizer(example["text"], padding="max_length", truncation=True) | |
# Tokenize dataset | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Load model | |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2) | |
# Load accuracy metric | |
accuracy = evaluate.load("accuracy") | |
# Compute metrics function | |
def compute_metrics(eval_pred): | |
logits, labels = eval_pred | |
predictions = np.argmax(logits, axis=-1) | |
return accuracy.compute(predictions=predictions, references=labels) | |
# Define training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
num_train_epochs=1, | |
weight_decay=0.01, | |
) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"].shuffle(seed=42).select(range(2000)), | |
eval_dataset=tokenized_datasets["test"].shuffle(seed=42).select(range(1000)), | |
compute_metrics=compute_metrics, | |
) | |
# Train model | |
trainer.train() |