Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ | |
import math | |
import copy | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(f"activation should be relu/gelu, not {activation}.") | |
def _is_power_of_2(n): | |
if (not isinstance(n, int)) or (n < 0): | |
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))) | |
return (n & (n-1) == 0) and n != 0 | |
def c2_xavier_fill(module): | |
# Caffe2 implementation of XavierFill in fact | |
nn.init.kaiming_uniform_(module.weight, a=1) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
def with_pos_embed(x, pos): | |
return x if pos is None else x + pos | |
class PositionEmbeddingSine(nn.Module): | |
def __init__(self, num_pos_feats=64, temperature=256, normalize=False, scale=None): | |
super().__init__() | |
self.num_pos_feats = num_pos_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
def forward(self, x, mask=None): | |
if mask is None: | |
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) | |
not_mask = ~mask | |
h, w = not_mask.shape[-2:] | |
minlen = min(h, w) | |
h_embed = not_mask.cumsum(1, dtype=torch.float32) | |
w_embed = not_mask.cumsum(2, dtype=torch.float32) | |
if self.normalize: | |
eps = 1e-6 | |
h_embed = (h_embed - h/2) / (minlen + eps) * self.scale | |
w_embed = (w_embed - w/2) / (minlen + eps) * self.scale | |
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | |
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | |
pos_w = w_embed[:, :, :, None] / dim_t | |
pos_h = h_embed[:, :, :, None] / dim_t | |
pos_w = torch.stack( | |
(pos_w[:, :, :, 0::2].sin(), pos_w[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos_h = torch.stack( | |
(pos_h[:, :, :, 0::2].sin(), pos_h[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos = torch.cat((pos_h, pos_w), dim=3).permute(0, 3, 1, 2) | |
return pos | |
def __repr__(self, _repr_indent=4): | |
head = "Positional encoding " + self.__class__.__name__ | |
body = [ | |
"num_pos_feats: {}".format(self.num_pos_feats), | |
"temperature: {}".format(self.temperature), | |
"normalize: {}".format(self.normalize), | |
"scale: {}".format(self.scale), | |
] | |
# _repr_indent = 4 | |
lines = [head] + [" " * _repr_indent + line for line in body] | |
return "\n".join(lines) | |
class Conv2d_Convenience(nn.Conv2d): | |
def __init__(self, *args, **kwargs): | |
norm = kwargs.pop("norm", None) | |
activation = kwargs.pop("activation", None) | |
super().__init__(*args, **kwargs) | |
self.norm = norm | |
self.activation = activation | |
def forward(self, x): | |
if not torch.jit.is_scripting(): | |
if x.numel() == 0 and self.training: | |
assert not isinstance( | |
self.norm, torch.nn.SyncBatchNorm | |
), "SyncBatchNorm does not support empty inputs!" | |
x = F.conv2d( | |
x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups | |
) | |
if self.norm is not None: | |
x = self.norm(x) | |
if self.activation is not None: | |
x = self.activation(x) | |
return x | |