Spaces:
Running
Running
Commit
Β·
4f7f009
1
Parent(s):
bf459ce
changed app.py
Browse files
app.py
CHANGED
@@ -2,15 +2,23 @@ from fastapi import FastAPI, Request, Form
|
|
2 |
from fastapi.responses import HTMLResponse, RedirectResponse, JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
from typing import List
|
|
|
5 |
from clearml import Model
|
6 |
import torch
|
7 |
from configs import add_args
|
8 |
from models import build_or_load_gen_model
|
9 |
import argparse
|
10 |
from argparse import Namespace
|
11 |
-
import os
|
12 |
from peft import PeftModel, PeftConfig, get_peft_model, LoraConfig
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
MAX_SOURCE_LENGTH = 512
|
15 |
|
16 |
def pad_assert(tokenizer, source_ids):
|
@@ -43,18 +51,24 @@ BASE_MODEL_NAME = "microsoft/codereviewer"
|
|
43 |
args = Namespace(
|
44 |
model_name_or_path=BASE_MODEL_NAME,
|
45 |
load_model_path=None,
|
46 |
-
# Add other necessary default arguments if build_or_load_gen_model requires them
|
47 |
)
|
48 |
print(f"Loading base model architecture and tokenizer from: {BASE_MODEL_NAME}")
|
49 |
config, base_model, tokenizer = build_or_load_gen_model(args)
|
50 |
print("Base model architecture and tokenizer loaded.")
|
51 |
|
52 |
-
# Download the fine-tuned weights
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
finetuned_weights_path = model_obj.get_local_copy()
|
56 |
adapter_dir = os.path.dirname(finetuned_weights_path)
|
57 |
-
|
58 |
print(f"Fine-tuned adapter weights downloaded to directory: {adapter_dir}")
|
59 |
|
60 |
# Create LoRA configuration matching the fine-tuned checkpoint
|
|
|
2 |
from fastapi.responses import HTMLResponse, RedirectResponse, JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
from typing import List
|
5 |
+
import os # β add this
|
6 |
from clearml import Model
|
7 |
import torch
|
8 |
from configs import add_args
|
9 |
from models import build_or_load_gen_model
|
10 |
import argparse
|
11 |
from argparse import Namespace
|
|
|
12 |
from peft import PeftModel, PeftConfig, get_peft_model, LoraConfig
|
13 |
|
14 |
+
# ββ Load ClearML secrets from HF Spaces environment βββββββββββββββββββββββββββ
|
15 |
+
CLEARML_WEB_SERVER = os.environ["CLEARML_WEB_SERVER"]
|
16 |
+
CLEARML_API_SERVER = os.environ["CLEARML_API_SERVER"]
|
17 |
+
CLEARML_FILES_SERVER = os.environ["CLEARML_FILES_SERVER"]
|
18 |
+
CLEARML_ACCESS_KEY = os.environ["CLEARML_API_ACCESS_KEY"]
|
19 |
+
CLEARML_SECRET_KEY = os.environ["CLEARML_API_SECRET_KEY"]
|
20 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
21 |
+
|
22 |
MAX_SOURCE_LENGTH = 512
|
23 |
|
24 |
def pad_assert(tokenizer, source_ids):
|
|
|
51 |
args = Namespace(
|
52 |
model_name_or_path=BASE_MODEL_NAME,
|
53 |
load_model_path=None,
|
|
|
54 |
)
|
55 |
print(f"Loading base model architecture and tokenizer from: {BASE_MODEL_NAME}")
|
56 |
config, base_model, tokenizer = build_or_load_gen_model(args)
|
57 |
print("Base model architecture and tokenizer loaded.")
|
58 |
|
59 |
+
# Download the fine-tuned weights via ClearML using your injected creds
|
60 |
+
model_obj = Model(
|
61 |
+
model_id="34e25deb24c64b74b29c8519ed15fe3e",
|
62 |
+
api_host=CLEARML_API_SERVER,
|
63 |
+
web_host=CLEARML_WEB_SERVER,
|
64 |
+
files_host=CLEARML_FILES_SERVER,
|
65 |
+
credentials={
|
66 |
+
"access_key": CLEARML_ACCESS_KEY,
|
67 |
+
"secret_key": CLEARML_SECRET_KEY,
|
68 |
+
},
|
69 |
+
)
|
70 |
finetuned_weights_path = model_obj.get_local_copy()
|
71 |
adapter_dir = os.path.dirname(finetuned_weights_path)
|
|
|
72 |
print(f"Fine-tuned adapter weights downloaded to directory: {adapter_dir}")
|
73 |
|
74 |
# Create LoRA configuration matching the fine-tuned checkpoint
|