shekkari21 commited on
Commit
4f7f009
Β·
1 Parent(s): bf459ce

changed app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -6
app.py CHANGED
@@ -2,15 +2,23 @@ from fastapi import FastAPI, Request, Form
2
  from fastapi.responses import HTMLResponse, RedirectResponse, JSONResponse
3
  from pydantic import BaseModel
4
  from typing import List
 
5
  from clearml import Model
6
  import torch
7
  from configs import add_args
8
  from models import build_or_load_gen_model
9
  import argparse
10
  from argparse import Namespace
11
- import os
12
  from peft import PeftModel, PeftConfig, get_peft_model, LoraConfig
13
 
 
 
 
 
 
 
 
 
14
  MAX_SOURCE_LENGTH = 512
15
 
16
  def pad_assert(tokenizer, source_ids):
@@ -43,18 +51,24 @@ BASE_MODEL_NAME = "microsoft/codereviewer"
43
  args = Namespace(
44
  model_name_or_path=BASE_MODEL_NAME,
45
  load_model_path=None,
46
- # Add other necessary default arguments if build_or_load_gen_model requires them
47
  )
48
  print(f"Loading base model architecture and tokenizer from: {BASE_MODEL_NAME}")
49
  config, base_model, tokenizer = build_or_load_gen_model(args)
50
  print("Base model architecture and tokenizer loaded.")
51
 
52
- # Download the fine-tuned weights from ClearML
53
- CLEARML_MODEL_ID = "34e25deb24c64b74b29c8519ed15fe3e"
54
- model_obj = Model(model_id=CLEARML_MODEL_ID)
 
 
 
 
 
 
 
 
55
  finetuned_weights_path = model_obj.get_local_copy()
56
  adapter_dir = os.path.dirname(finetuned_weights_path)
57
-
58
  print(f"Fine-tuned adapter weights downloaded to directory: {adapter_dir}")
59
 
60
  # Create LoRA configuration matching the fine-tuned checkpoint
 
2
  from fastapi.responses import HTMLResponse, RedirectResponse, JSONResponse
3
  from pydantic import BaseModel
4
  from typing import List
5
+ import os # ← add this
6
  from clearml import Model
7
  import torch
8
  from configs import add_args
9
  from models import build_or_load_gen_model
10
  import argparse
11
  from argparse import Namespace
 
12
  from peft import PeftModel, PeftConfig, get_peft_model, LoraConfig
13
 
14
+ # ── Load ClearML secrets from HF Spaces environment ───────────────────────────
15
+ CLEARML_WEB_SERVER = os.environ["CLEARML_WEB_SERVER"]
16
+ CLEARML_API_SERVER = os.environ["CLEARML_API_SERVER"]
17
+ CLEARML_FILES_SERVER = os.environ["CLEARML_FILES_SERVER"]
18
+ CLEARML_ACCESS_KEY = os.environ["CLEARML_API_ACCESS_KEY"]
19
+ CLEARML_SECRET_KEY = os.environ["CLEARML_API_SECRET_KEY"]
20
+ # ───────────────────────────────────────────────────────────────────────────────
21
+
22
  MAX_SOURCE_LENGTH = 512
23
 
24
  def pad_assert(tokenizer, source_ids):
 
51
  args = Namespace(
52
  model_name_or_path=BASE_MODEL_NAME,
53
  load_model_path=None,
 
54
  )
55
  print(f"Loading base model architecture and tokenizer from: {BASE_MODEL_NAME}")
56
  config, base_model, tokenizer = build_or_load_gen_model(args)
57
  print("Base model architecture and tokenizer loaded.")
58
 
59
+ # Download the fine-tuned weights via ClearML using your injected creds
60
+ model_obj = Model(
61
+ model_id="34e25deb24c64b74b29c8519ed15fe3e",
62
+ api_host=CLEARML_API_SERVER,
63
+ web_host=CLEARML_WEB_SERVER,
64
+ files_host=CLEARML_FILES_SERVER,
65
+ credentials={
66
+ "access_key": CLEARML_ACCESS_KEY,
67
+ "secret_key": CLEARML_SECRET_KEY,
68
+ },
69
+ )
70
  finetuned_weights_path = model_obj.get_local_copy()
71
  adapter_dir = os.path.dirname(finetuned_weights_path)
 
72
  print(f"Fine-tuned adapter weights downloaded to directory: {adapter_dir}")
73
 
74
  # Create LoRA configuration matching the fine-tuned checkpoint