Spaces:
Runtime error
Runtime error
import gradio as gr | |
from fastai.vision.all import load_learner | |
from fastai import * | |
import torch | |
import os | |
from PIL import Image | |
model_path = 'multi_target_resnet18.pkl' | |
model = load_learner(model_path) | |
def result(path): | |
pred,_,probability = model.predict(path) | |
arr = ['Name','Status','Disease Name'] | |
vals = ['', '', ''] | |
names = ['Maple', 'Banana', 'Cucumber', 'Mango', 'Maple', 'Pepper', 'Rose', 'Tomato'] | |
status = ['diseased', 'no disease found'] | |
for x in pred: | |
if x in names: | |
vals[0] = x.capitalize() | |
elif x in status: | |
vals[1] = x.capitalize() | |
elif x == 'healthy': | |
vals[2] = 'None' | |
else: | |
vals[2] = x.capitalize() | |
return f'{arr[0]}:\t{vals[0]}\n{arr[1]}:\t{vals[1]}\n{arr[2]}:\t{vals[2]}\n' | |
path = 'test-images/' | |
image_path = [] | |
for i in os.listdir(path): | |
image_path.append(path+i) | |
image = gr.components.Image(shape =(300,300)) | |
label = gr.components.Label() | |
iface = gr.Interface(fn=result, inputs=image, outputs='text', examples = image_path) | |
iface.launch(inline = False) |