Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
# Load the model and processor | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-72B-Instruct", torch_dtype="auto", device_map="auto" | |
) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
# Define a function to process input and generate a response | |
def generate_response(image, text): | |
# Prepare the input | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
# Process the input data | |
text_data = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text_data], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
# Generate the output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=generate_response, | |
inputs=[gr.Image(type="pil", label="Input Image"), gr.Textbox(label="Input Text")], | |
outputs="text", | |
title="Qwen2-VL-72B-Instruct", | |
description="Generate AI responses based on image and text input using Qwen2-VL-72B-Instruct.", | |
) | |
# Launch the app | |
interface.launch() |