shawarmabytes's picture
Update app.py
cf3860f
raw
history blame
1.71 kB
import streamlit as st
from streamlit_player import st_player
from transformers import pipeline
def tester(text):
#classifier = pipeline("sentiment-analysis", model='arpanghoshal/EmoRoBERTa')
#classifier = pipeline("sentiment-analysis", model='cardiffnlp/twitter-roberta-base-emotion')
#classifier = pipeline("sentiment-analysis", 'j-hartmann/emotion-english-distilroberta-base')
classifier = pipeline("sentiment-analysis", model='bhadresh-savani/distilbert-base-uncased-emotion')
results = classifier(text)
st.write(results[0]['label'])
if (results[0]['label']=="anger"):
st_player("https://www.youtube.com/watch?v=kh0BWQ4Uo6w")
elif (results[0]['label']=="disgust"):
st_player("https://www.youtube.com/watch?v=zWq2TT3ieGE")
elif (results[0]['label']=="fear"):
st_player("https://www.youtube.com/watch?v=iyEUvUcMHgE")
elif (results[0]['label']=="joy"):
st_player("https://www.youtube.com/watch?v=1k8craCGpgs")
elif (results[0]['label']=="sadness"):
st.write(<iframe width="560" height="315" src="https://www.youtube.com/embed/kkIabnfvJI8" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>)
#st_player("https://www.youtube.com/embed/BZsXcc_tC-o?autoplay=1")
elif (results[0]['label']=="surprise"):
st_player("https://youtu.be/CmSKVW1v0xM")
return results[0]['label']
#return results
emo = st.text_input('This application detects the emotion in your text input and suggests a song that matches it. Please enter text below to try:')
tester(emo)