shapermindai's picture
Synced repo using 'sync_with_huggingface' Github Action
a3ffd31 verified
raw
history blame
4.34 kB
"""
This module implements a hyperparameter optimization routine for the embedding application. It utilizes TPE optimization from Optuna.
Each run, the optimizer will set the default values inside the hyperparameters. At the end, it will output the best ones it has found.
"""
import re
import json
import optuna
import gradio as gr
import numpy as np
import logging
import hashlib
logging.getLogger('optuna').setLevel(logging.WARNING)
import extensions.superboogav2.parameters as parameters
from pathlib import Path
from .benchmark import benchmark
from .parameters import Parameters
from modules.logging_colors import logger
# Format the parameters into markdown format.
def _markdown_hyperparams():
res = []
for param_name, param_value in Parameters.getInstance().hyperparameters.items():
# Escape any markdown syntax
param_name = re.sub(r"([_*\[\]()~`>#+-.!])", r"\\\1", param_name)
param_value_default = re.sub(r"([_*\[\]()~`>#+-.!])", r"\\\1", str(param_value['default'])) if param_value['default'] else ' '
res.append('* {}: **{}**'.format(param_name, param_value_default))
return '\n'.join(res)
# Convert numpy types to python types.
def _convert_np_types(params):
for key in params:
if type(params[key]) == np.bool_:
params[key] = bool(params[key])
elif type(params[key]) == np.int64:
params[key] = int(params[key])
elif type(params[key]) == np.float64:
params[key] = float(params[key])
return params
# Set the default values for the hyperparameters.
def _set_hyperparameters(params):
for param_name, param_value in params.items():
if param_name in Parameters.getInstance().hyperparameters:
Parameters.getInstance().hyperparameters[param_name]['default'] = param_value
# Check if the parameter is for optimization.
def _is_optimization_param(val):
is_opt = val.get('should_optimize', False) # Either does not exist or is false
return is_opt
# Create a hashable representation of the parameters
def _get_params_hash(params):
params_str = json.dumps(params, sort_keys=True)
return hashlib.sha256(params_str.encode()).hexdigest()
def optimize(collector, progress=gr.Progress()):
# Inform the user that something is happening.
progress(0, desc=f'Setting Up...')
# Track the current step
current_step = 0
# Track the best score
best_score = 0
# Dictionary for caching scores
scores_cache = {}
def objective_function(trial):
nonlocal current_step
nonlocal best_score
nonlocal scores_cache
params = {}
for key, val in Parameters.getInstance().hyperparameters.items():
if _is_optimization_param(val):
params[key] = trial.suggest_categorical(key, val['categories'])
_set_hyperparameters(params)
params_hash = _get_params_hash(params)
# If the score for these parameters is in the cache, return it
if params_hash in scores_cache:
return scores_cache[params_hash]
# Benchmark the current set of parameters.
score, max_score = benchmark(Path("extensions/superboogav2/benchmark_texts/questions.json"), collector)
# Cache the score
scores_cache[params_hash] = score
result = json.dumps(_convert_np_types(params), indent=4)
result += f'\nScore: {score}/{max_score}'
logger.debug(result)
# Increment the current step
current_step += 1
# Update the best score
best_score = max(best_score, score)
# Update the progress
progress(current_step / parameters.get_optimization_steps(), desc=f'Optimizing... {current_step}/{parameters.get_optimization_steps()}')
return -score
# Run the optimization.
study = optuna.create_study()
study.optimize(objective_function, n_trials=int(parameters.get_optimization_steps()))
best_params = study.best_params
_set_hyperparameters(best_params)
# Convert results to a markdown string.
str_result = f"## Best parameters:\n\n{_markdown_hyperparams()}\n\n## Score:\n\n{best_score}"
# Save to JSON file
with open('best_params.json', 'w') as fp:
json.dump(_convert_np_types(best_params), fp, indent=4)
return str_result