shapermindai's picture
Synced repo using 'sync_with_huggingface' Github Action
a3ffd31 verified
raw
history blame
20.8 kB
import base64
import copy
import re
import time
from collections import deque
from io import BytesIO
import requests
import tiktoken
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import LogitsProcessor, LogitsProcessorList
from extensions.openai.errors import InvalidRequestError
from extensions.openai.utils import debug_msg
from modules import shared
from modules.chat import (
generate_chat_prompt,
generate_chat_reply,
load_character_memoized,
load_instruction_template_memoized
)
from modules.presets import load_preset_memoized
from modules.text_generation import (
decode,
encode,
generate_reply,
get_reply_from_output_ids
)
class LogitsBiasProcessor(LogitsProcessor):
def __init__(self, logit_bias={}):
self.logit_bias = logit_bias
if self.logit_bias:
self.keys = list([int(key) for key in self.logit_bias.keys()])
values = [self.logit_bias[str(key)] for key in self.keys]
self.values = torch.tensor(values, dtype=torch.float, device=shared.model.device)
debug_msg(f"{self})")
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
if self.logit_bias:
debug_msg(logits[0, self.keys], " + ", self.values)
logits[0, self.keys] += self.values
debug_msg(" --> ", logits[0, self.keys])
debug_msg(" max/min ", float(torch.max(logits[0])), float(torch.min(logits[0])))
return logits
def __repr__(self):
return f"<{self.__class__.__name__}(logit_bias={self.logit_bias})>"
class LogprobProcessor(LogitsProcessor):
def __init__(self, logprobs=None):
self.logprobs = logprobs
self.token_alternatives = {}
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
if self.logprobs is not None: # 0-5
log_e_probabilities = F.log_softmax(logits, dim=1)
top_values, top_indices = torch.topk(log_e_probabilities, k=self.logprobs + 1)
top_tokens = [get_reply_from_output_ids([tok]) for tok in top_indices[0]]
top_probs = [float(x) for x in top_values[0]]
self.token_alternatives = dict(zip(top_tokens, top_probs))
debug_msg(repr(self))
return logits
def __repr__(self):
return f"<{self.__class__.__name__}(logprobs={self.logprobs}, token_alternatives={self.token_alternatives})>"
def convert_logprobs_to_tiktoken(model, logprobs):
# more problems than it's worth.
# try:
# encoder = tiktoken.encoding_for_model(model)
# # just pick the first one if it encodes to multiple tokens... 99.9% not required and maybe worse overall.
# return dict([(encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items()])
# except KeyError:
# # assume native tokens if we can't find the tokenizer
# return logprobs
return logprobs
def process_parameters(body, is_legacy=False):
generate_params = body
max_tokens_str = 'length' if is_legacy else 'max_tokens'
generate_params['max_new_tokens'] = body.pop(max_tokens_str)
if generate_params['truncation_length'] == 0:
generate_params['truncation_length'] = shared.settings['truncation_length']
if generate_params['temperature'] == 0:
generate_params['do_sample'] = False
generate_params['top_k'] = 1
if body['preset'] is not None:
preset = load_preset_memoized(body['preset'])
generate_params.update(preset)
generate_params['custom_stopping_strings'] = []
if 'stop' in body: # str or array, max len 4 (ignored)
if isinstance(body['stop'], str):
generate_params['custom_stopping_strings'] = [body['stop']]
elif isinstance(body['stop'], list):
generate_params['custom_stopping_strings'] = body['stop']
logits_processor = []
logit_bias = body.get('logit_bias', None)
if logit_bias: # {str: float, ...}
logits_processor = [LogitsBiasProcessor(logit_bias)]
logprobs = None # coming to chat eventually
if 'logprobs' in body:
logprobs = body.get('logprobs', 0) # maybe cap at topk? don't clamp 0-5.
generate_params['logprob_proc'] = LogprobProcessor(logprobs)
logits_processor.extend([generate_params['logprob_proc']])
else:
logprobs = None
if logits_processor: # requires logits_processor support
generate_params['logits_processor'] = LogitsProcessorList(logits_processor)
return generate_params
def convert_history(history):
'''
Chat histories in this program are in the format [message, reply].
This function converts OpenAI histories to that format.
'''
chat_dialogue = []
current_message = ""
current_reply = ""
user_input = ""
system_message = ""
# Multimodal: convert OpenAI format to multimodal extension format
if any('content' in entry and isinstance(entry['content'], list) for entry in history):
new_history = []
for entry in history:
if isinstance(entry['content'], list):
image_url = None
content = None
for item in entry['content']:
if not isinstance(item, dict):
continue
if item['type'] == 'image_url' and isinstance(item['image_url'], dict):
image_url = item['image_url']['url']
elif item['type'] == 'text' and isinstance(item['text'], str):
content = item['text']
if image_url and content:
new_history.append({"image_url": image_url, "role": "user"})
new_history.append({"content": content, "role": "user"})
else:
new_history.append(entry)
history = new_history
for entry in history:
if "image_url" in entry:
image_url = entry['image_url']
if "base64" in image_url:
image_url = re.sub('^data:image/.+;base64,', '', image_url)
img = Image.open(BytesIO(base64.b64decode(image_url)))
else:
try:
my_res = requests.get(image_url)
img = Image.open(BytesIO(my_res.content))
except Exception:
raise 'Image cannot be loaded from the URL!'
buffered = BytesIO()
if img.mode in ("RGBA", "P"):
img = img.convert("RGB")
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
content = f'<img src="data:image/jpeg;base64,{img_str}">'
else:
content = entry["content"]
role = entry["role"]
if role == "user":
user_input = content
if current_message:
chat_dialogue.append([current_message, ''])
current_message = ""
current_message = content
elif role == "assistant":
current_reply = content
if current_message:
chat_dialogue.append([current_message, current_reply])
current_message = ""
current_reply = ""
else:
chat_dialogue.append(['', current_reply])
elif role == "system":
system_message = content
# if current_message:
# chat_dialogue.append([current_message, ''])
return user_input, system_message, {'internal': chat_dialogue, 'visible': copy.deepcopy(chat_dialogue)}
def chat_completions_common(body: dict, is_legacy: bool = False, stream=False) -> dict:
if body.get('functions', []):
raise InvalidRequestError(message="functions is not supported.", param='functions')
if body.get('function_call', ''):
raise InvalidRequestError(message="function_call is not supported.", param='function_call')
if 'messages' not in body:
raise InvalidRequestError(message="messages is required", param='messages')
messages = body['messages']
for m in messages:
if 'role' not in m:
raise InvalidRequestError(message="messages: missing role", param='messages')
elif m['role'] == 'function':
raise InvalidRequestError(message="role: function is not supported.", param='messages')
if 'content' not in m and "image_url" not in m:
raise InvalidRequestError(message="messages: missing content", param='messages')
# Chat Completions
object_type = 'chat.completions' if not stream else 'chat.completions.chunk'
created_time = int(time.time())
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
resp_list = 'data' if is_legacy else 'choices'
# generation parameters
generate_params = process_parameters(body, is_legacy=is_legacy)
continue_ = body['continue_']
# Instruction template
if body['instruction_template_str']:
instruction_template_str = body['instruction_template_str']
elif body['instruction_template']:
instruction_template = body['instruction_template']
instruction_template = "Alpaca" if instruction_template == "None" else instruction_template
instruction_template_str = load_instruction_template_memoized(instruction_template)
else:
instruction_template_str = shared.settings['instruction_template_str']
chat_template_str = body['chat_template_str'] or shared.settings['chat_template_str']
chat_instruct_command = body['chat_instruct_command'] or shared.settings['chat-instruct_command']
# Chat character
character = body['character'] or shared.settings['character']
character = "Assistant" if character == "None" else character
name1 = body['user_name'] or shared.settings['name1']
name1, name2, _, greeting, context = load_character_memoized(character, name1, '')
name2 = body['bot_name'] or name2
context = body['context'] or context
greeting = body['greeting'] or greeting
# History
user_input, custom_system_message, history = convert_history(messages)
generate_params.update({
'mode': body['mode'],
'name1': name1,
'name2': name2,
'context': context,
'greeting': greeting,
'instruction_template_str': instruction_template_str,
'custom_system_message': custom_system_message,
'chat_template_str': chat_template_str,
'chat-instruct_command': chat_instruct_command,
'history': history,
'stream': stream
})
max_tokens = generate_params['max_new_tokens']
if max_tokens in [None, 0]:
generate_params['max_new_tokens'] = 512
generate_params['auto_max_new_tokens'] = True
requested_model = generate_params.pop('model')
logprob_proc = generate_params.pop('logprob_proc', None)
def chat_streaming_chunk(content):
# begin streaming
chunk = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
# So yeah... do both methods? delta and messages.
"message": {'role': 'assistant', 'content': content},
"delta": {'role': 'assistant', 'content': content},
}],
}
if logprob_proc: # not official for chat yet
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
# else:
# chunk[resp_list][0]["logprobs"] = None
return chunk
if stream:
yield chat_streaming_chunk('')
# generate reply #######################################
prompt = generate_chat_prompt(user_input, generate_params)
token_count = len(encode(prompt)[0])
debug_msg({'prompt': prompt, 'generate_params': generate_params})
generator = generate_chat_reply(
user_input, generate_params, regenerate=False, _continue=continue_, loading_message=False)
answer = ''
seen_content = ''
completion_token_count = 0
for a in generator:
answer = a['internal'][-1][1]
if stream:
len_seen = len(seen_content)
new_content = answer[len_seen:]
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet.
continue
seen_content = answer
chunk = chat_streaming_chunk(new_content)
yield chunk
completion_token_count = len(encode(answer)[0])
stop_reason = "stop"
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= generate_params['max_new_tokens']:
stop_reason = "length"
if stream:
chunk = chat_streaming_chunk('')
chunk[resp_list][0]['finish_reason'] = stop_reason
chunk['usage'] = {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
yield chunk
else:
resp = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": stop_reason,
"message": {"role": "assistant", "content": answer}
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if logprob_proc: # not official for chat yet
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
# else:
# resp[resp_list][0]["logprobs"] = None
yield resp
def completions_common(body: dict, is_legacy: bool = False, stream=False):
object_type = 'text_completion.chunk' if stream else 'text_completion'
created_time = int(time.time())
cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
resp_list = 'data' if is_legacy else 'choices'
prompt_str = 'context' if is_legacy else 'prompt'
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
if prompt_str not in body:
raise InvalidRequestError("Missing required input", param=prompt_str)
# common params
generate_params = process_parameters(body, is_legacy=is_legacy)
max_tokens = generate_params['max_new_tokens']
generate_params['stream'] = stream
requested_model = generate_params.pop('model')
logprob_proc = generate_params.pop('logprob_proc', None)
suffix = body['suffix'] if body['suffix'] else ''
echo = body['echo']
if not stream:
prompt_arg = body[prompt_str]
if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)):
prompt_arg = [prompt_arg]
resp_list_data = []
total_completion_token_count = 0
total_prompt_token_count = 0
for idx, prompt in enumerate(prompt_arg, start=0):
if isinstance(prompt[0], int):
# token lists
if requested_model == shared.model_name:
prompt = decode(prompt)[0]
else:
try:
encoder = tiktoken.encoding_for_model(requested_model)
prompt = encoder.decode(prompt)
except KeyError:
prompt = decode(prompt)[0]
prefix = prompt if echo else ''
token_count = len(encode(prompt)[0])
total_prompt_token_count += token_count
# generate reply #######################################
debug_msg({'prompt': prompt, 'generate_params': generate_params})
generator = generate_reply(prompt, generate_params, is_chat=False)
answer = ''
for a in generator:
answer = a
completion_token_count = len(encode(answer)[0])
total_completion_token_count += completion_token_count
stop_reason = "stop"
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens:
stop_reason = "length"
respi = {
"index": idx,
"finish_reason": stop_reason,
"text": prefix + answer + suffix,
"logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None,
}
resp_list_data.extend([respi])
resp = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name,
resp_list: resp_list_data,
"usage": {
"prompt_tokens": total_prompt_token_count,
"completion_tokens": total_completion_token_count,
"total_tokens": total_prompt_token_count + total_completion_token_count
}
}
yield resp
else:
prompt = body[prompt_str]
if isinstance(prompt, list):
if prompt and isinstance(prompt[0], int):
try:
encoder = tiktoken.encoding_for_model(requested_model)
prompt = encoder.decode(prompt)
except KeyError:
prompt = decode(prompt)[0]
else:
raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str)
prefix = prompt if echo else ''
token_count = len(encode(prompt)[0])
def text_streaming_chunk(content):
# begin streaming
chunk = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
"text": content,
"logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None,
}],
}
return chunk
yield text_streaming_chunk(prefix)
# generate reply #######################################
debug_msg({'prompt': prompt, 'generate_params': generate_params})
generator = generate_reply(prompt, generate_params, is_chat=False)
answer = ''
seen_content = ''
completion_token_count = 0
for a in generator:
answer = a
len_seen = len(seen_content)
new_content = answer[len_seen:]
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet.
continue
seen_content = answer
chunk = text_streaming_chunk(new_content)
yield chunk
completion_token_count = len(encode(answer)[0])
stop_reason = "stop"
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens:
stop_reason = "length"
chunk = text_streaming_chunk(suffix)
chunk[resp_list][0]["finish_reason"] = stop_reason
chunk["usage"] = {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
yield chunk
def chat_completions(body: dict, is_legacy: bool = False) -> dict:
generator = chat_completions_common(body, is_legacy, stream=False)
return deque(generator, maxlen=1).pop()
def stream_chat_completions(body: dict, is_legacy: bool = False):
for resp in chat_completions_common(body, is_legacy, stream=True):
yield resp
def completions(body: dict, is_legacy: bool = False) -> dict:
generator = completions_common(body, is_legacy, stream=False)
return deque(generator, maxlen=1).pop()
def stream_completions(body: dict, is_legacy: bool = False):
for resp in completions_common(body, is_legacy, stream=True):
yield resp