Spaces:
Build error
Build error
File size: 6,910 Bytes
a3ffd31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import json
import time
from typing import Dict, List
from pydantic import BaseModel, Field
class GenerationOptions(BaseModel):
preset: str | None = Field(default=None, description="The name of a file under text-generation-webui/presets (without the .yaml extension). The sampling parameters that get overwritten by this option are the keys in the default_preset() function in modules/presets.py.")
min_p: float = 0
dynamic_temperature: bool = False
dynatemp_low: float = 1
dynatemp_high: float = 1
dynatemp_exponent: float = 1
top_k: int = 0
repetition_penalty: float = 1
repetition_penalty_range: int = 1024
typical_p: float = 1
tfs: float = 1
top_a: float = 0
epsilon_cutoff: float = 0
eta_cutoff: float = 0
guidance_scale: float = 1
negative_prompt: str = ''
penalty_alpha: float = 0
mirostat_mode: int = 0
mirostat_tau: float = 5
mirostat_eta: float = 0.1
temperature_last: bool = False
do_sample: bool = True
seed: int = -1
encoder_repetition_penalty: float = 1
no_repeat_ngram_size: int = 0
min_length: int = 0
num_beams: int = 1
length_penalty: float = 1
early_stopping: bool = False
truncation_length: int = 0
max_tokens_second: int = 0
prompt_lookup_num_tokens: int = 0
custom_token_bans: str = ""
auto_max_new_tokens: bool = False
ban_eos_token: bool = False
add_bos_token: bool = True
skip_special_tokens: bool = True
grammar_string: str = ""
class CompletionRequestParams(BaseModel):
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.")
prompt: str | List[str]
best_of: int | None = Field(default=1, description="Unused parameter.")
echo: bool | None = False
frequency_penalty: float | None = 0
logit_bias: dict | None = None
logprobs: int | None = None
max_tokens: int | None = 16
n: int | None = Field(default=1, description="Unused parameter.")
presence_penalty: float | None = 0
stop: str | List[str] | None = None
stream: bool | None = False
suffix: str | None = None
temperature: float | None = 1
top_p: float | None = 1
user: str | None = Field(default=None, description="Unused parameter.")
class CompletionRequest(GenerationOptions, CompletionRequestParams):
pass
class CompletionResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "text_completion"
usage: dict
class ChatCompletionRequestParams(BaseModel):
messages: List[dict]
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.")
frequency_penalty: float | None = 0
function_call: str | dict | None = Field(default=None, description="Unused parameter.")
functions: List[dict] | None = Field(default=None, description="Unused parameter.")
logit_bias: dict | None = None
max_tokens: int | None = None
n: int | None = Field(default=1, description="Unused parameter.")
presence_penalty: float | None = 0
stop: str | List[str] | None = None
stream: bool | None = False
temperature: float | None = 1
top_p: float | None = 1
user: str | None = Field(default=None, description="Unused parameter.")
mode: str = Field(default='instruct', description="Valid options: instruct, chat, chat-instruct.")
instruction_template: str | None = Field(default=None, description="An instruction template defined under text-generation-webui/instruction-templates. If not set, the correct template will be automatically obtained from the model metadata.")
instruction_template_str: str | None = Field(default=None, description="A Jinja2 instruction template. If set, will take precedence over everything else.")
character: str | None = Field(default=None, description="A character defined under text-generation-webui/characters. If not set, the default \"Assistant\" character will be used.")
user_name: str | None = Field(default=None, description="Your name (the user). By default, it's \"You\".", alias="name1")
bot_name: str | None = Field(default=None, description="Overwrites the value set by character field.", alias="name2")
context: str | None = Field(default=None, description="Overwrites the value set by character field.")
greeting: str | None = Field(default=None, description="Overwrites the value set by character field.")
chat_template_str: str | None = Field(default=None, description="Jinja2 template for chat.")
chat_instruct_command: str | None = None
continue_: bool = Field(default=False, description="Makes the last bot message in the history be continued instead of starting a new message.")
class ChatCompletionRequest(GenerationOptions, ChatCompletionRequestParams):
pass
class ChatCompletionResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "chat.completion"
usage: dict
class EmbeddingsRequest(BaseModel):
input: str | List[str] | List[int] | List[List[int]]
model: str | None = Field(default=None, description="Unused parameter. To change the model, set the OPENEDAI_EMBEDDING_MODEL and OPENEDAI_EMBEDDING_DEVICE environment variables before starting the server.")
encoding_format: str = Field(default="float", description="Can be float or base64.")
user: str | None = Field(default=None, description="Unused parameter.")
class EmbeddingsResponse(BaseModel):
index: int
embedding: List[float]
object: str = "embedding"
class EncodeRequest(BaseModel):
text: str
class EncodeResponse(BaseModel):
tokens: List[int]
length: int
class DecodeRequest(BaseModel):
tokens: List[int]
class DecodeResponse(BaseModel):
text: str
class TokenCountResponse(BaseModel):
length: int
class LogitsRequestParams(BaseModel):
prompt: str
use_samplers: bool = False
top_logits: int | None = 50
frequency_penalty: float | None = 0
max_tokens: int | None = 16
presence_penalty: float | None = 0
temperature: float | None = 1
top_p: float | None = 1
class LogitsRequest(GenerationOptions, LogitsRequestParams):
pass
class LogitsResponse(BaseModel):
logits: Dict[str, float]
class ModelInfoResponse(BaseModel):
model_name: str
lora_names: List[str]
class ModelListResponse(BaseModel):
model_names: List[str]
class LoadModelRequest(BaseModel):
model_name: str
args: dict | None = None
settings: dict | None = None
class LoraListResponse(BaseModel):
lora_names: List[str]
class LoadLorasRequest(BaseModel):
lora_names: List[str]
def to_json(obj):
return json.dumps(obj.__dict__, indent=4)
def to_dict(obj):
return obj.__dict__
|