Upload 6 files
Browse files- .gitattributes +1 -0
- app.py +17 -0
- chromedriver.exe +3 -0
- paraphrase.py +45 -0
- requirements.txt +4 -0
- scrap.py +17 -0
- summary.py +13 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
chromedriver.exe filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from scrap import extract
|
3 |
+
from paraphrase import para
|
4 |
+
from summary import summarize
|
5 |
+
|
6 |
+
|
7 |
+
st.title("Let's Summarize!")
|
8 |
+
link = st.text_input("Enter a product link from amazon....")
|
9 |
+
print(link)
|
10 |
+
def process():
|
11 |
+
data = extract(link)
|
12 |
+
#print(data)
|
13 |
+
paras = para(data)
|
14 |
+
summ = summarize(paras)
|
15 |
+
st.success(summ)
|
16 |
+
st.button('Extract', on_click=process)
|
17 |
+
st.text("Here is the product description...")
|
chromedriver.exe
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93af100505b192263d8dba3b9d735e8ba803ce58c45f0b1bee9efe53a3ec831b
|
3 |
+
size 12358144
|
paraphrase.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
|
5 |
+
|
6 |
+
def para(paragraph):
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality")
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
model = model.to(device)
|
11 |
+
|
12 |
+
sen = []
|
13 |
+
for i in paragraph:
|
14 |
+
res = len(re.findall(r'\w+', i))
|
15 |
+
if res == 2:
|
16 |
+
pass
|
17 |
+
else:
|
18 |
+
res = i.replace('"', "'").replace("\n", "")
|
19 |
+
sen.append(res)
|
20 |
+
|
21 |
+
para = []
|
22 |
+
for sentence in sen:
|
23 |
+
text = "paraphrase: " + sentence + " </s>"
|
24 |
+
|
25 |
+
encoding = tokenizer.encode_plus(text,max_length =1024, padding=True, return_tensors="pt")
|
26 |
+
input_ids,attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
27 |
+
|
28 |
+
model.eval()
|
29 |
+
beam_outputs = model.generate(
|
30 |
+
input_ids=input_ids,attention_mask=attention_mask,
|
31 |
+
max_length=1024,
|
32 |
+
early_stopping=True,
|
33 |
+
num_beams=15,
|
34 |
+
num_return_sequences=3)
|
35 |
+
|
36 |
+
#for beam_output in beam_outputs:
|
37 |
+
sent = tokenizer.decode(beam_outputs[2], skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
38 |
+
para.append(sent)
|
39 |
+
paras = []
|
40 |
+
for i in para:
|
41 |
+
resf = i.replace("paraphrasedoutput: ", "")
|
42 |
+
paras.append(resf)
|
43 |
+
return paras
|
44 |
+
|
45 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
selenium==4.8.0
|
2 |
+
sentencepiece==0.1.97
|
3 |
+
torch==1.13.1
|
4 |
+
transformers==4.25.1
|
scrap.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from selenium.webdriver import Chrome
|
3 |
+
from selenium.webdriver.common.by import By
|
4 |
+
|
5 |
+
def extract(link):
|
6 |
+
url = link
|
7 |
+
driver_path = "./chromedriver.exe"
|
8 |
+
browser = Chrome(executable_path = driver_path)
|
9 |
+
browser.get(url)
|
10 |
+
data = browser.find_element(By.ID,"aplus_feature_div")
|
11 |
+
data = data.text
|
12 |
+
data = data.split("\n")
|
13 |
+
time.sleep(2)
|
14 |
+
return data
|
15 |
+
|
16 |
+
ss = extract("https://www.amazon.com/dp/B09B9TB61G?th=1")
|
17 |
+
print(ss)
|
summary.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import PegasusForConditionalGeneration, AutoTokenizer
|
3 |
+
|
4 |
+
def summarize(passage):
|
5 |
+
txt = " ".join(passage)
|
6 |
+
model_name = 'google/pegasus-cnn_dailymail'
|
7 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
|
10 |
+
batch = tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device)
|
11 |
+
translated = model.generate(**batch)
|
12 |
+
summy = tokenizer.batch_decode(translated, skip_special_tokens=True)
|
13 |
+
return summy
|