Spaces:
Sleeping
Sleeping
import streamlit as st | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.image import img_to_array | |
from PIL import Image | |
import os | |
from huggingface_hub import notebook_login | |
from huggingface_hub import hf_hub_download | |
# Title of the Streamlit app | |
st.title("Yellow Rust Severity Prediction") | |
authkey= os.getenv('YellowRust') | |
from huggingface_hub import login | |
login(token=authkey) | |
# Download the model file from Hugging Face | |
model_path = hf_hub_download(repo_id="shaheer-data/Yellow-Rust-Prediction", filename="final_meta_model.keras") | |
loaded_model = load_model(model_path) # Load model using tf.keras directly | |
# Function to preprocess the uploaded image | |
def preprocess_image(image): | |
# Resize the image to match the model input size (e.g., 224x224 for many pre-trained models) | |
image = image.resize((224, 224)) # Adjust size based on your model input | |
image = img_to_array(image) # Convert image to numpy array | |
image = image / 255.0 # Normalize pixel values to [0, 1] | |
image = np.expand_dims(image, axis=0) # Add batch dimension | |
return image | |
# Streamlit file uploader | |
uploaded_file = st.file_uploader("Upload a wheat leaf image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Preprocess the image | |
processed_image = preprocess_image(image) | |
# Perform prediction | |
with st.spinner("Predicting..."): | |
prediction = loaded_model.predict(processed_image) | |
predicted_class = np.argmax(prediction, axis=1)[0] # Get the class index | |
class_labels = ['0', 'MR', 'MRMS', 'MS', 'R', 'S'] # Update based on your classes | |
st.success(f"Predicted Severity Class: {class_labels[predicted_class]}") |