Commit
Browse files- app.py +83 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM, MBart50TokenizerFast, MBartForConditionalGeneration, AutoProcessor, AutoModel
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from IPython.display import Audio
|
6 |
+
import sys
|
7 |
+
import cv2
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
# Load Image to Text model
|
11 |
+
image_processor = AutoProcessor.from_pretrained("sezenkarakus/image-GIT-description-model-v3")
|
12 |
+
image_to_text_model = AutoModelForCausalLM.from_pretrained("sezenkarakus/image-GIT-description-model-v3")
|
13 |
+
|
14 |
+
# Load Translation model
|
15 |
+
ckpt = 'Narrativa/mbart-large-50-finetuned-opus-en-pt-translation'
|
16 |
+
|
17 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(ckpt)
|
18 |
+
translation_model = MBartForConditionalGeneration.from_pretrained(ckpt)
|
19 |
+
|
20 |
+
tokenizer.src_lang = 'en_XX'
|
21 |
+
|
22 |
+
# Load Audio Model
|
23 |
+
audio_processor = AutoProcessor.from_pretrained("suno/bark")
|
24 |
+
audio_model = AutoModel.from_pretrained("suno/bark")
|
25 |
+
|
26 |
+
|
27 |
+
# Methods
|
28 |
+
|
29 |
+
def generate_caption(image):
|
30 |
+
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
|
31 |
+
generated_ids = image_to_text_model.generate(pixel_values=pixel_values, max_length=200)
|
32 |
+
generated_caption = image_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
33 |
+
|
34 |
+
return generated_caption
|
35 |
+
|
36 |
+
def translate(text):
|
37 |
+
inputs = tokenizer(text, return_tensors='pt')
|
38 |
+
input_ids = inputs.input_ids
|
39 |
+
attention_mask = inputs.attention_mask
|
40 |
+
|
41 |
+
try:
|
42 |
+
input_ids = input_ids.to('cuda')
|
43 |
+
attention_mask = attention_mask.to('cuda')
|
44 |
+
model = translation_model.to("cuda")
|
45 |
+
except:
|
46 |
+
print('No NVidia GPU, model performance may not be as good')
|
47 |
+
model = translation_model
|
48 |
+
|
49 |
+
output = model.generate(input_ids, attention_mask=attention_mask, forced_bos_token_id=tokenizer.lang_code_to_id['pt_XX'])
|
50 |
+
translated = tokenizer.decode(output[0], skip_special_tokens=True)
|
51 |
+
|
52 |
+
return translated
|
53 |
+
|
54 |
+
# Carregamento de imagens locais
|
55 |
+
|
56 |
+
img_url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
57 |
+
# img_url = 'https://farm4.staticflickr.com/3733/9000662079_ce3599d0d8_z.jpg'
|
58 |
+
# img_url = 'https://farm4.staticflickr.com/3088/5793281956_2a15b2559c_z.jpg'
|
59 |
+
# img_url = 'https://farm5.staticflickr.com/4073/4816939054_844feb0078_z.jpg'
|
60 |
+
|
61 |
+
image = Image.open(requests.get(img_url, stream=True).raw)
|
62 |
+
|
63 |
+
# Generate using models
|
64 |
+
# Generate text from image
|
65 |
+
caption = generate_caption(image)
|
66 |
+
print(caption)
|
67 |
+
|
68 |
+
# Translate
|
69 |
+
translated_caption = translate(caption)
|
70 |
+
print(translated_caption)
|
71 |
+
|
72 |
+
# Generate Audio
|
73 |
+
inputs = audio_processor(
|
74 |
+
text=caption,
|
75 |
+
return_tensors="pt",
|
76 |
+
)
|
77 |
+
|
78 |
+
speech_values = audio_model.generate(**inputs, do_sample=True)
|
79 |
+
|
80 |
+
sampling_rate = audio_model.generation_config.sample_rate
|
81 |
+
Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate)
|
82 |
+
|
83 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
accelerate
|
4 |
+
streamlit~=1.30.0
|
5 |
+
pillow~=10.3.0
|
6 |
+
requests~=2.31.0
|
7 |
+
ipython~=8.20.0
|