Tom Aarsen
Initial commit; minus indices
841db35
raw
history blame
3.39 kB
import time
import gradio as gr
from datasets import load_dataset
import pandas as pd
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import quantize_embeddings
import faiss
from usearch.index import Index
# Load titles and texts
title_text_dataset = load_dataset("mixedbread-ai/wikipedia-2023-11-embed-en-pre-1", split="train").select_columns(["title", "text"])
# Load the int8 and binary indices. Int8 is loaded as a view to save memory, as we never actually perform search with it.
int8_view = Index.restore("wikipedia_int8_usearch_1m.index", view=True)
binary_index: faiss.IndexBinaryFlat = faiss.read_index_binary("wikipedia_ubinary_faiss_1m.index")
# Load the SentenceTransformer model for embedding the queries
model = SentenceTransformer(
"mixedbread-ai/mxbai-embed-large-v1",
prompts={
"retrieval": "Represent this sentence for searching relevant passages: ",
},
default_prompt_name="retrieval",
)
def search(query, top_k: int = 10, rerank_multiplier: int = 4):
# 1. Embed the query as float32
start_time = time.time()
query_embedding = model.encode(query)
embed_time = time.time() - start_time
# 2. Quantize the query to ubinary
start_time = time.time()
query_embedding_ubinary = quantize_embeddings(query_embedding, "ubinary")
quantize_time = time.time() - start_time
# 3. Search the binary index
start_time = time.time()
_scores, binary_ids = binary_index.search(query_embedding_ubinary, top_k * rerank_multiplier)
binary_ids = binary_ids[0]
search_time = time.time() - start_time
# 4. Load the corresponding int8 embeddings
start_time = time.time()
int8_embeddings = int8_view[binary_ids].astype(int)
load_time = time.time() - start_time
# 5. Rerank the top_k * rerank_multiplier using the float32 query embedding and the int8 document embeddings
start_time = time.time()
scores = query_embedding @ int8_embeddings.T
rerank_time = time.time() - start_time
# 6. Sort the scores and return the top_k
start_time = time.time()
top_k_indices = (-scores).argsort()[-top_k:]
top_k_scores = scores[top_k_indices]
top_k_titles, top_k_texts = zip(*[(title_text_dataset[idx]["title"], title_text_dataset[idx]["text"]) for idx in binary_ids[top_k_indices].tolist()])
df = pd.DataFrame({"Score": [round(value, 2) for value in top_k_scores], "Title": top_k_titles, "Text": top_k_texts})
sort_time = time.time() - start_time
return df, {
"Embed Time": f"{embed_time:.4f} s",
"Quantize Time": f"{quantize_time:.4f} s",
"Search Time": f"{search_time:.4f} s",
"Load Time": f"{load_time:.4f} s",
"Rerank Time": f"{rerank_time:.4f} s",
"Sort Time": f"{sort_time:.4f} s",
"Total Retrieval Time": f"{quantize_time + search_time + load_time + rerank_time + sort_time:.4f} s"
}
with gr.Blocks(title="Quantized Retrieval") as demo:
query = gr.Textbox(label="Query")
search_button = gr.Button(value="Search")
with gr.Row():
with gr.Column(scale=4):
output = gr.Dataframe(column_widths=["10%", "20%", "80%"], headers=["Score", "Title", "Text"])
with gr.Column(scale=1):
json = gr.JSON()
search_button.click(search, inputs=[query], outputs=[output, json])
demo.queue()
demo.launch(debug=True)