Spaces:
Running
on
T4
Running
on
T4
File size: 32,683 Bytes
6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 63c9215 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 63c9215 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 6828338 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 777b2a0 6051ae2 408ec97 6051ae2 adedf8e 6051ae2 810f572 6051ae2 6c0d667 ebb05ef 6c0d667 ebb05ef 6c0d667 6051ae2 810f572 6051ae2 810f572 6051ae2 4dbcda2 6051ae2 4dbcda2 6051ae2 eded98b 6051ae2 fb9117f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
from enum import Enum
from functools import partial
from pathlib import Path
from typing import Optional, Tuple
import gradio as gr
from gradio_huggingfacehub_search import HuggingfaceHubSearch
import huggingface_hub
from sentence_transformers import SentenceTransformer
from sentence_transformers import (
export_dynamic_quantized_onnx_model as st_export_dynamic_quantized_onnx_model,
export_optimized_onnx_model as st_export_optimized_onnx_model,
export_static_quantized_openvino_model as st_export_static_quantized_openvino_model,
)
from huggingface_hub import model_info, upload_folder, get_repo_discussions, list_repo_commits, HfFileSystem
from huggingface_hub.errors import RepositoryNotFoundError
from optimum.intel import OVQuantizationConfig
from tempfile import TemporaryDirectory
class Backend(Enum):
# TORCH = "PyTorch"
ONNX = "ONNX"
ONNX_DYNAMIC_QUANTIZATION = "ONNX (Dynamic Quantization)"
ONNX_OPTIMIZATION = "ONNX (Optimization)"
OPENVINO = "OpenVINO"
OPENVINO_STATIC_QUANTIZATION = "OpenVINO (Static Quantization)"
def __str__(self):
return self.value
backends = [str(backend) for backend in Backend]
FILE_SYSTEM = HfFileSystem()
def is_new_model(model_id: str) -> bool:
"""
Check if the model ID exists on the Hugging Face Hub. If we get a request error, then we
assume the model *does* exist.
"""
try:
model_info(model_id)
except RepositoryNotFoundError:
return True
except Exception:
pass
return False
def is_sentence_transformer_model(model_id: str) -> bool:
return "sentence-transformers" in model_info(model_id).tags
def get_last_commit(model_id: str) -> str:
"""
Get the last commit hash of the model ID.
"""
return f"https://huggingface.co/{model_id}/commit/{list_repo_commits(model_id)[0].commit_id}"
def get_last_pr(model_id: str) -> Tuple[str, int]:
last_pr = next(get_repo_discussions(model_id))
return last_pr.url, last_pr.num
def does_file_glob_exist(repo_id: str, glob: str) -> bool:
"""
Check if a file glob exists in the repository.
"""
try:
return bool(FILE_SYSTEM.glob(f"{repo_id}/{glob}", detail=False))
except FileNotFoundError:
return False
def export_to_torch(model_id, create_pr, output_model_id):
model = SentenceTransformer(model_id, backend="torch")
model.push_to_hub(
repo_id=output_model_id,
create_pr=create_pr,
exist_ok=True,
)
def export_to_onnx(model_id: str, create_pr: bool, output_model_id: str, token: Optional[str] = None) -> None:
if does_file_glob_exist(output_model_id, "**/model.onnx"):
raise FileExistsError("An ONNX model already exists in the repository")
model = SentenceTransformer(model_id, backend="onnx")
commit_message = "Add exported onnx model 'model.onnx'"
if is_new_model(output_model_id):
model.push_to_hub(
repo_id=output_model_id,
commit_message=commit_message,
create_pr=create_pr,
token=token,
)
else:
with TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
commit_description = f"""
Hello!
*This pull request has been automatically generated from the [Sentence Transformers backend-export](https://huggingface.co/spaces/sentence-transformers/backend-export) Space.*
## Pull Request overview
* Add exported ONNX model `model.onnx`.
## Tip:
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
```python
from sentence_transformers import SentenceTransformer
# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"{output_model_id}",
revision=f"refs/pr/{{pr_number}}",
backend="onnx",
)
# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
```
"""
upload_folder(
repo_id=output_model_id,
folder_path=Path(tmp_dir) / "onnx",
path_in_repo="onnx",
commit_message=commit_message,
commit_description=commit_description if create_pr else None,
create_pr=create_pr,
token=token,
)
def export_to_onnx_snippet(model_id: str, create_pr: bool, output_model_id: str) -> str:
return """\
pip install sentence_transformers[onnx-gpu]
# or
pip install sentence_transformers[onnx]
""", f"""\
from sentence_transformers import SentenceTransformer
# 1. Load the model to be exported with the ONNX backend
model = SentenceTransformer(
"{model_id}",
backend="onnx",
)
# 2. Push the model to the Hugging Face Hub
{f'model.push_to_hub("{output_model_id}")'
if not create_pr
else f'''model.push_to_hub(
"{output_model_id}",
create_pr=True,
)'''}
""", f"""\
from sentence_transformers import SentenceTransformer
# 1. Load the model from the Hugging Face Hub
# (until merged) Use the `revision` argument to load the model from the PR
pr_number = 2
model = SentenceTransformer(
"{output_model_id}",
revision=f"refs/pr/{{pr_number}}",
backend="onnx",
)
# 2. Inference works as normal
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
similarities = model.similarity(embeddings, embeddings)
"""
def export_to_onnx_dynamic_quantization(
model_id: str, create_pr: bool, output_model_id: str, onnx_quantization_config: str, token: Optional[str] = None
) -> None:
if does_file_glob_exist(output_model_id, f"onnx/model_qint8_{onnx_quantization_config}.onnx"):
raise FileExistsError("The quantized ONNX model already exists in the repository")
model = SentenceTransformer(model_id, backend="onnx")
if not create_pr and is_new_model(output_model_id):
model.push_to_hub(repo_id=output_model_id, token=token)
# Monkey-patch the upload_folder function to include the token, as it's not used in export_dynamic_quantized_onnx_model
original_upload_folder = huggingface_hub.upload_folder
huggingface_hub.upload_folder = partial(original_upload_folder, token=token)
try:
st_export_dynamic_quantized_onnx_model(
model,
quantization_config=onnx_quantization_config,
model_name_or_path=output_model_id,
push_to_hub=True,
create_pr=create_pr,
)
except ValueError:
# Currently, quantization with optimum has some issues if there's already an ONNX model in a subfolder
model = SentenceTransformer(model_id, backend="onnx", model_kwargs={"export": True})
st_export_dynamic_quantized_onnx_model(
model,
quantization_config=onnx_quantization_config,
model_name_or_path=output_model_id,
push_to_hub=True,
create_pr=create_pr,
)
finally:
huggingface_hub.upload_folder = original_upload_folder
def export_to_onnx_dynamic_quantization_snippet(
model_id: str, create_pr: bool, output_model_id: str, onnx_quantization_config: str
) -> str:
return """\
pip install sentence_transformers[onnx-gpu]
# or
pip install sentence_transformers[onnx]
""", f"""\
from sentence_transformers import (
SentenceTransformer,
export_dynamic_quantized_onnx_model,
)
# 1. Load the model to be quantized with the ONNX backend
model = SentenceTransformer(
"{model_id}",
backend="onnx",
)
# 2. Export the model with {onnx_quantization_config} dynamic quantization
export_dynamic_quantized_onnx_model(
model,
quantization_config="{onnx_quantization_config}",
model_name_or_path="{output_model_id}",
push_to_hub=True,
{''' create_pr=True,
''' if create_pr else ''})
""", f"""\
from sentence_transformers import SentenceTransformer
# 1. Load the model from the Hugging Face Hub
# (until merged) Use the `revision` argument to load the model from the PR
pr_number = 2
model = SentenceTransformer(
"{output_model_id}",
revision=f"refs/pr/{{pr_number}}",
backend="onnx",
model_kwargs={{"file_name": "model_qint8_{onnx_quantization_config}.onnx"}},
)
# 2. Inference works as normal
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
similarities = model.similarity(embeddings, embeddings)
"""
def export_to_onnx_optimization(model_id: str, create_pr: bool, output_model_id: str, onnx_optimization_config: str, token: Optional[str] = None) -> None:
if does_file_glob_exist(output_model_id, f"onnx/model_{onnx_optimization_config}.onnx"):
raise FileExistsError("The optimized ONNX model already exists in the repository")
model = SentenceTransformer(model_id, backend="onnx")
if not create_pr and is_new_model(output_model_id):
model.push_to_hub(repo_id=output_model_id, token=token)
# Monkey-patch the upload_folder function to include the token, as it's not used in export_optimized_onnx_model
original_upload_folder = huggingface_hub.upload_folder
huggingface_hub.upload_folder = partial(original_upload_folder, token=token)
try:
st_export_optimized_onnx_model(
model,
optimization_config=onnx_optimization_config,
model_name_or_path=output_model_id,
push_to_hub=True,
create_pr=create_pr,
)
finally:
huggingface_hub.upload_folder = original_upload_folder
def export_to_onnx_optimization_snippet(model_id: str, create_pr: bool, output_model_id: str, onnx_optimization_config: str) -> str:
return """\
pip install sentence_transformers[onnx-gpu]
# or
pip install sentence_transformers[onnx]
""", f"""\
from sentence_transformers import (
SentenceTransformer,
export_optimized_onnx_model,
)
# 1. Load the model to be optimized with the ONNX backend
model = SentenceTransformer(
"{model_id}",
backend="onnx",
)
# 2. Export the model with {onnx_optimization_config} optimization level
export_optimized_onnx_model(
model,
optimization_config="{onnx_optimization_config}",
model_name_or_path="{output_model_id}",
push_to_hub=True,
{''' create_pr=True,
''' if create_pr else ''})
""", f"""\
from sentence_transformers import SentenceTransformer
# 1. Load the model from the Hugging Face Hub
# (until merged) Use the `revision` argument to load the model from the PR
pr_number = 2
model = SentenceTransformer(
"{output_model_id}",
revision=f"refs/pr/{{pr_number}}",
backend="onnx",
model_kwargs={{"file_name": "model_{onnx_optimization_config}.onnx"}},
)
# 2. Inference works as normal
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
similarities = model.similarity(embeddings, embeddings)
"""
def export_to_openvino(model_id: str, create_pr: bool, output_model_id: str, token: Optional[str] = None) -> None:
if does_file_glob_exist(output_model_id, "**/openvino_model.xml"):
raise FileExistsError("The OpenVINO model already exists in the repository")
model = SentenceTransformer(model_id, backend="openvino")
commit_message = "Add exported openvino model 'openvino_model.xml'"
if is_new_model(output_model_id):
model.push_to_hub(
repo_id=output_model_id,
commit_message=commit_message,
create_pr=create_pr,
token=token,
)
else:
with TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
commit_description = f"""
Hello!
*This pull request has been automatically generated from the [Sentence Transformers backend-export](https://huggingface.co/spaces/sentence-transformers/backend-export) Space.*
## Pull Request overview
* Add exported OpenVINO model `openvino_model.xml`.
## Tip:
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
```python
from sentence_transformers import SentenceTransformer
# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"{output_model_id}",
revision=f"refs/pr/{{pr_number}}",
backend="openvino",
)
# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
```
"""
upload_folder(
repo_id=output_model_id,
folder_path=Path(tmp_dir) / "openvino",
path_in_repo="openvino",
commit_message=commit_message,
commit_description=commit_description if create_pr else None,
create_pr=create_pr,
token=token,
)
def export_to_openvino_snippet(model_id: str, create_pr: bool, output_model_id: str) -> str:
return """\
pip install sentence_transformers[openvino]
""", f"""\
from sentence_transformers import SentenceTransformer
# 1. Load the model to be exported with the OpenVINO backend
model = SentenceTransformer(
"{model_id}",
backend="openvino",
)
# 2. Push the model to the Hugging Face Hub
{f'model.push_to_hub("{output_model_id}")'
if not create_pr
else f'''model.push_to_hub(
"{output_model_id}",
create_pr=True,
)'''}
""", f"""\
from sentence_transformers import SentenceTransformer
# 1. Load the model from the Hugging Face Hub
# (until merged) Use the `revision` argument to load the model from the PR
pr_number = 2
model = SentenceTransformer(
"{output_model_id}",
revision=f"refs/pr/{{pr_number}}",
backend="openvino",
)
# 2. Inference works as normal
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
similarities = model.similarity(embeddings, embeddings)
"""
def export_to_openvino_static_quantization(
model_id: str,
create_pr: bool,
output_model_id: str,
ov_quant_dataset_name: str,
ov_quant_dataset_subset: str,
ov_quant_dataset_split: str,
ov_quant_dataset_column_name: str,
ov_quant_dataset_num_samples: int,
token: Optional[str] = None,
) -> None:
if does_file_glob_exist(output_model_id, "openvino/openvino_model_qint8_quantized.xml"):
raise FileExistsError("The quantized OpenVINO model already exists in the repository")
model = SentenceTransformer(model_id, backend="openvino")
if not create_pr and is_new_model(output_model_id):
model.push_to_hub(repo_id=output_model_id, token=token)
# Monkey-patch the upload_folder function to include the token, as it's not used in export_static_quantized_openvino_model
original_upload_folder = huggingface_hub.upload_folder
huggingface_hub.upload_folder = partial(original_upload_folder, token=token)
try:
st_export_static_quantized_openvino_model(
model,
quantization_config=OVQuantizationConfig(
num_samples=ov_quant_dataset_num_samples,
),
model_name_or_path=output_model_id,
dataset_name=ov_quant_dataset_name,
dataset_config_name=ov_quant_dataset_subset,
dataset_split=ov_quant_dataset_split,
column_name=ov_quant_dataset_column_name,
push_to_hub=True,
create_pr=create_pr,
)
finally:
huggingface_hub.upload_folder = original_upload_folder
def export_to_openvino_static_quantization_snippet(
model_id: str,
create_pr: bool,
output_model_id: str,
ov_quant_dataset_name: str,
ov_quant_dataset_subset: str,
ov_quant_dataset_split: str,
ov_quant_dataset_column_name: str,
ov_quant_dataset_num_samples: int,
) -> str:
return """\
pip install sentence_transformers[openvino]
""", f"""\
from sentence_transformers import (
SentenceTransformer,
export_static_quantized_openvino_model,
)
from optimum.intel import OVQuantizationConfig
# 1. Load the model to be quantized with the OpenVINO backend
model = SentenceTransformer(
"{model_id}",
backend="openvino",
)
# 2. Export the model with int8 static quantization
export_static_quantized_openvino_model(
model,
quantization_config=OVQuantizationConfig(
num_samples={ov_quant_dataset_num_samples},
),
model_name_or_path="{output_model_id}",
dataset_name="{ov_quant_dataset_name}",
dataset_config_name="{ov_quant_dataset_subset}",
dataset_split="{ov_quant_dataset_split}",
column_name="{ov_quant_dataset_column_name}",
push_to_hub=True,
{''' create_pr=True,
''' if create_pr else ''})
""", f"""\
from sentence_transformers import SentenceTransformer
# 1. Load the model from the Hugging Face Hub
# (until merged) Use the `revision` argument to load the model from the PR
pr_number = 2
model = SentenceTransformer(
"{output_model_id}",
revision=f"refs/pr/{{pr_number}}",
backend="openvino",
model_kwargs={{"file_name": "openvino_model_qint8_quantized.xml"}},
)
# 2. Inference works as normal
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
similarities = model.similarity(embeddings, embeddings)
"""
def on_submit(
model_id,
create_pr,
output_model_id,
backend,
onnx_quantization_config,
onnx_optimization_config,
ov_quant_dataset_name,
ov_quant_dataset_subset,
ov_quant_dataset_split,
ov_quant_dataset_column_name,
ov_quant_dataset_num_samples,
inference_snippet: str,
oauth_token: Optional[gr.OAuthToken] = None,
profile: Optional[gr.OAuthProfile] = None,
):
if oauth_token is None or profile is None:
return "Commit or PR url:<br>...", inference_snippet, gr.Textbox("Please sign in with Hugging Face to use this Space", visible=True)
if not model_id:
return "Commit or PR url:<br>...", inference_snippet, gr.Textbox("Please enter a model ID", visible=True)
if not is_sentence_transformer_model(model_id):
return "Commit or PR url:<br>...", inference_snippet, gr.Textbox("The source model must have a Sentence Transformers tag", visible=True)
if output_model_id and "/" not in output_model_id:
output_model_id = f"{profile.name}/{output_model_id}"
output_model_id = output_model_id if not create_pr else model_id
try:
if backend == Backend.ONNX.value:
export_to_onnx(model_id, create_pr, output_model_id, token=oauth_token.token)
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
export_to_onnx_dynamic_quantization(
model_id, create_pr, output_model_id, onnx_quantization_config, token=oauth_token.token
)
elif backend == Backend.ONNX_OPTIMIZATION.value:
export_to_onnx_optimization(
model_id, create_pr, output_model_id, onnx_optimization_config, token=oauth_token.token
)
elif backend == Backend.OPENVINO.value:
export_to_openvino(model_id, create_pr, output_model_id, token=oauth_token.token)
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
export_to_openvino_static_quantization(
model_id,
create_pr,
output_model_id,
ov_quant_dataset_name,
ov_quant_dataset_subset,
ov_quant_dataset_split,
ov_quant_dataset_column_name,
ov_quant_dataset_num_samples,
token=oauth_token.token,
)
except FileExistsError as exc:
return "Commit or PR url:<br>...", inference_snippet, gr.Textbox(str(exc), visible=True)
if create_pr:
url, num = get_last_pr(output_model_id)
return f"PR url:<br>{url}", inference_snippet.replace("pr_number = 2", f"pr_number = {num}"), gr.Textbox(visible=False)
# Remove the lines that refer to the revision argument
lines = inference_snippet.splitlines()
del lines[7]
del lines[4]
del lines[3]
inference_snippet = "\n".join(lines)
return f"Commit url:<br>{get_last_commit(output_model_id)}", inference_snippet, gr.Textbox(visible=False)
def on_change(
model_id,
create_pr,
output_model_id,
backend,
onnx_quantization_config,
onnx_optimization_config,
ov_quant_dataset_name,
ov_quant_dataset_subset,
ov_quant_dataset_split,
ov_quant_dataset_column_name,
ov_quant_dataset_num_samples,
oauth_token: Optional[gr.OAuthToken] = None,
profile: Optional[gr.OAuthProfile] = None,
) -> str:
if oauth_token is None or profile is None:
return "", "", "", gr.Textbox("Please sign in with Hugging Face to use this Space", visible=True)
if not model_id:
return "", "", "", gr.Textbox("Please enter a model ID", visible=True)
if output_model_id and "/" not in output_model_id:
output_model_id = f"{profile.username}/{output_model_id}"
output_model_id = output_model_id if not create_pr else model_id
if backend == Backend.ONNX.value:
snippets = export_to_onnx_snippet(model_id, create_pr, output_model_id)
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
snippets = export_to_onnx_dynamic_quantization_snippet(
model_id, create_pr, output_model_id, onnx_quantization_config
)
elif backend == Backend.ONNX_OPTIMIZATION.value:
snippets = export_to_onnx_optimization_snippet(
model_id, create_pr, output_model_id, onnx_optimization_config
)
elif backend == Backend.OPENVINO.value:
snippets = export_to_openvino_snippet(model_id, create_pr, output_model_id)
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
snippets = export_to_openvino_static_quantization_snippet(
model_id,
create_pr,
output_model_id,
ov_quant_dataset_name,
ov_quant_dataset_subset,
ov_quant_dataset_split,
ov_quant_dataset_column_name,
ov_quant_dataset_num_samples,
)
else:
return "", "", "", gr.Textbox("Unexpected backend!", visible=True)
return *snippets, gr.Textbox(visible=False)
css = """
.container {
padding-left: 0;
}
div:has(> div.text-error) {
border-color: var(--error-border-color);
}
.small-text * {
font-size: var(--block-info-text-size);
}
"""
with gr.Blocks(
css=css,
theme=gr.themes.Base(),
) as demo:
gr.LoginButton(min_width=250)
with gr.Row():
# Left Input Column
with gr.Column(scale=2):
gr.Markdown(
value="""\
### Export a Sentence Transformer model to accelerated backends
Sentence Transformers embedding models can be optimized for **faster inference** on CPU and GPU devices by exporting, quantizing, and optimizing them in ONNX and OpenVINO formats.
Observe the [Speeding up Inference](https://sbert.net/docs/sentence_transformer/usage/efficiency.html) documentation for more information.
""",
label="",
container=True,
)
gr.HTML(value="""\
<details><summary>Click to see performance benchmarks</summary>
<table>
<thead>
<tr>
<th>GPU</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<img src="https://huggingface.co/spaces/tomaarsen/backend-export/resolve/main/images/backends_benchmark_gpu.png" alt="">
</td>
<td>
<img src="https://huggingface.co/spaces/tomaarsen/backend-export/resolve/main/images/backends_benchmark_cpu.png" alt="">
</td>
</tr>
</tbody>
</table>
<ul>
<li><code>onnx</code> refers to the ONNX backend</li>
<li><code>onnx-qint8</code> refers to ONNX (Dynamic Quantization)</li>
<li><code>onnx-O1</code> to <code>onnx-O4</code> refers to ONNX (Optimization)</li>
<li><code>openvino</code> refers to the OpenVINO backend</li>
<li><code>openvino-qint8</code> refers to OpenVINO (Static Quantization)</li>
</ul>
</details>
""")
model_id = HuggingfaceHubSearch(
label="Sentence Transformer model to export",
placeholder="Search for Sentence Transformer models on Hugging Face",
search_type="model",
)
create_pr = gr.Checkbox(
value=True,
label="Create PR",
info="Create a pull request instead of pushing directly to a repository",
)
output_model_id = gr.Textbox(
value="",
label="Model repository to write to",
placeholder="Model ID",
type="text",
visible=False,
)
create_pr.change(
lambda create_pr: gr.Textbox(visible=not create_pr),
inputs=[create_pr],
outputs=[output_model_id],
)
backend = gr.Radio(
choices=backends,
value=Backend.ONNX,
label="Backend",
)
with gr.Group(visible=True) as onnx_group:
gr.Markdown(
value="[ONNX Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#onnx)",
container=True,
elem_classes=["small-text"]
)
with gr.Group(visible=False) as onnx_dynamic_quantization_group:
onnx_quantization_config = gr.Radio(
choices=["arm64", "avx2", "avx512", "avx512_vnni"],
value="avx512_vnni",
label="Quantization config",
info="[ONNX Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-onnx-models)"
)
with gr.Group(visible=False) as onnx_optimization_group:
onnx_optimization_config = gr.Radio(
choices=["O1", "O2", "O3", "O4"],
value="O4",
label="Optimization config",
info="[ONNX Optimization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#optimizing-onnx-models)"
)
with gr.Group(visible=False) as openvino_group:
gr.Markdown(
value="[OpenVINO Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#openvino)",
container=True,
elem_classes=["small-text"]
)
with gr.Group(visible=False) as openvino_static_quantization_group:
gr.Markdown(
value="[OpenVINO Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-openvino-models)",
container=True,
elem_classes=["small-text"]
)
ov_quant_dataset_name = HuggingfaceHubSearch(
value="nyu-mll/glue",
label="Calibration Dataset Name",
placeholder="Search for Sentence Transformer datasets on Hugging Face",
search_type="dataset",
)
ov_quant_dataset_subset = gr.Textbox(
value="sst2",
label="Calibration Dataset Subset",
placeholder="Calibration Dataset Subset",
type="text",
max_lines=1,
)
ov_quant_dataset_split = gr.Textbox(
value="train",
label="Calibration Dataset Split",
placeholder="Calibration Dataset Split",
type="text",
max_lines=1,
)
ov_quant_dataset_column_name = gr.Textbox(
value="sentence",
label="Calibration Dataset Column Name",
placeholder="Calibration Dataset Column Name",
type="text",
max_lines=1,
)
ov_quant_dataset_num_samples = gr.Number(
value=300,
label="Calibration Dataset Num Samples",
)
backend.change(
lambda backend: (
(
gr.Group(visible=True)
if backend == Backend.ONNX.value
else gr.Group(visible=False)
),
(
gr.Group(visible=True)
if backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value
else gr.Group(visible=False)
),
(
gr.Group(visible=True)
if backend == Backend.ONNX_OPTIMIZATION.value
else gr.Group(visible=False)
),
(
gr.Group(visible=True)
if backend == Backend.OPENVINO.value
else gr.Group(visible=False)
),
(
gr.Group(visible=True)
if backend == Backend.OPENVINO_STATIC_QUANTIZATION.value
else gr.Group(visible=False)
),
),
inputs=[backend],
outputs=[
onnx_group,
onnx_dynamic_quantization_group,
onnx_optimization_group,
openvino_group,
openvino_static_quantization_group,
],
)
submit_button = gr.Button(
"Export Model",
variant="primary",
)
# Right Input Column
with gr.Column(scale=1):
error = gr.Textbox(
value="",
label="Error",
type="text",
visible=False,
max_lines=1,
interactive=False,
elem_classes=["text-error"],
)
requirements = gr.Code(
value="",
language="shell",
label="Requirements",
lines=1,
)
export_snippet = gr.Code(
value="",
language="python",
label="Export Snippet",
)
inference_snippet = gr.Code(
value="",
language="python",
label="Inference Snippet",
)
url = gr.Markdown(
value="Commit or PR url:<br>...",
label="",
container=True,
visible=True,
)
submit_button.click(
on_submit,
inputs=[
model_id,
create_pr,
output_model_id,
backend,
onnx_quantization_config,
onnx_optimization_config,
ov_quant_dataset_name,
ov_quant_dataset_subset,
ov_quant_dataset_split,
ov_quant_dataset_column_name,
ov_quant_dataset_num_samples,
inference_snippet,
],
outputs=[url, inference_snippet, error],
)
for input_component in [
model_id,
create_pr,
output_model_id,
backend,
onnx_quantization_config,
onnx_optimization_config,
ov_quant_dataset_name,
ov_quant_dataset_subset,
ov_quant_dataset_split,
ov_quant_dataset_column_name,
ov_quant_dataset_num_samples,
]:
input_component.change(
on_change,
inputs=[
model_id,
create_pr,
output_model_id,
backend,
onnx_quantization_config,
onnx_optimization_config,
ov_quant_dataset_name,
ov_quant_dataset_subset,
ov_quant_dataset_split,
ov_quant_dataset_column_name,
ov_quant_dataset_num_samples,
],
outputs=[requirements, export_snippet, inference_snippet, error],
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|