File size: 3,059 Bytes
15c7196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5333011
 
 
 
15c7196
 
 
 
5333011
 
 
 
15c7196
 
 
 
 
 
5333011
15c7196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import torch
import torch.nn as nn
import streamlit as st
from pydantic import BaseModel
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModel
from peft import PeftModel

# Get the token from environment variable (optional)
hf_token = os.environ.get("HF_TOKEN")

# Define model IDs
adapter_model_id = "seniormgt/arabicmgt-test"
base_model_id = "Alibaba-NLP/gte-multilingual-base"

# Define your model
class GTEClassifier(nn.Module):
    def __init__(self, model_name=base_model_id):
        super(GTEClassifier, self).__init__()
        self.base_model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
        self.config = self.base_model.config
        self.pooler = nn.Linear(self.config.hidden_size, self.config.hidden_size)
        self.pooler_activation = nn.Tanh()
        self.dropout = nn.Dropout(0.0)
        self.classifier = nn.Linear(self.config.hidden_size, 1)
        self.loss_fn = nn.BCEWithLogitsLoss()

    def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, labels=None, **kwargs):
        if inputs_embeds is not None:
            outputs = self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask)
        else:
            outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs.last_hidden_state[:, 0, :]
        pooled_output = self.pooler(pooled_output)
        pooled_output = self.pooler_activation(pooled_output)
        logits = self.classifier(self.dropout(pooled_output)).squeeze(-1)
        loss = None
        if labels is not None:
            labels = labels.float()
            loss = self.loss_fn(logits, labels)
        return {"loss": loss, "logits": logits}

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(adapter_model_id, token=hf_token, trust_remote_code=True)
base_model = GTEClassifier()
peft_model = PeftModel.from_pretrained(base_model, adapter_model_id, token=hf_token)
# peft_model.eval()

# Define prediction
def classify_text(text):
    inputs = tokenizer(text, max_length=512, padding=True, return_attention_mask=True, return_tensors="pt", truncation=True)
    input_ids = inputs['input_ids']
    attention_mask = inputs['attention_mask']

    with torch.no_grad():
        outputs = peft_model(input_ids=input_ids, attention_mask=attention_mask)
        logits = outputs["logits"]

    probs = torch.sigmoid(logits).cpu().numpy().squeeze()
    pred_label = int(probs >= 0.5)
    return {"label": str(pred_label), "confidence": float(probs)}

# 🔹 Streamlit UI
st.title("Text Classification (MGT Detection)")
text = st.text_area("Enter text", height=150)

if st.button("Classify") and text.strip():
    result = classify_text(text)
    st.json(result)

# 🔹 FastAPI endpoint
app = FastAPI()

class Input(BaseModel):
    data: list

@app.post("/predict")
async def predict(request: Request):
    payload = await request.json()
    text = payload["data"][0]["text"]
    result = classify_text(text)
    return {"data": [result]}