File size: 9,016 Bytes
996c29a 886c88d 996c29a ad38374 f39f01a 622d4df ad38374 996c29a 2375767 622d4df 003bee5 622d4df 886c88d 996c29a 25f6323 996c29a d691253 996c29a f7f38e1 ad38374 996c29a ad38374 996c29a ad38374 996c29a ad38374 996c29a ad38374 996c29a d8b06ca 996c29a ad38374 996c29a ad38374 996c29a ad38374 996c29a ad38374 996c29a ad38374 996c29a bf92994 996c29a f4de1ae bf92994 996c29a bf92994 d9b1803 da7e837 620d48f c4ac295 d1625e3 996c29a bf92994 b734a17 996c29a 3138356 657d167 996c29a 2105e3c bc429c6 996c29a c0675be 996c29a b734a17 996c29a f39f01a 1f79c7c 996c29a b4c4614 f7f38e1 e6c4947 ad38374 1f79c7c 996c29a bf92994 996c29a 0371bab 996c29a 0371bab 996c29a 0371bab 996c29a 0371bab 996c29a 0371bab 996c29a ad38374 996c29a bf92994 996c29a d8b06ca 996c29a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from mtcnn.mtcnn import MTCNN
from utils import *
cloth_examples = get_cloth_examples()
pose_examples = get_pose_examples()
tip1, tip2 = get_tips()
face_detector = MTCNN()
# Description
title = r"""
<h1 align="center">Outfit Anyone in the Wild: Get rid of Annoying Restrictions for Virtual Try-on Task</h1>
"""
description = r"""
<b>Official π€ Gradio demo</b> for <a href='https://github.com/selfitcamera/Outfit-Anyone-in-the-Wild' target='_blank'><b>Outfit Anyone in the Wild: Get rid of Annoying Restrictions for Virtual Try-on Task</b></a>.<br>
1. Clothing models are fixed in this demo, but you can create your own in SelfitCamera WeChat applet (for Chainese users).
2. You can upload your own pose photo, then click the run button and wait for 3~5 minutes to see the results.
3. After submitting the task, feel free to leave this page. Everytime you refresh this page, completed tasks will be displayed on the history tab (bind with your ip address).
4. Share your try-on photo with your friends and enjoy! π"""
css = """
.gradio-container {width: 85% !important}
"""
mk_guide = "If image does not display successfully after button clicked in your browser(mostly Mac+Chrome), try [this demo](https://openxlab.org.cn/apps/detail/jiangxiaoguo/OutfitAnyone-in-the-Wild) please"
def onUpload():
return ""
def onClick(cloth_id, pose_image, pose_id, size, request: gr.Request):
if pose_image is None:
return None, "no pose image found !", ""
faces = face_detector.detect_faces(pose_image[:,:,::-1])
if len(faces)==0:
return None, "Failed !!! No face detected !!! please upload a human photo!!! Not clothing photo!!!", ""
# pose_id, cloth_id = pose_id['label'], cloth_id['label']
# print(pose_id, cloth_id, size, (pose_image is None), len(pose_id)>0)
if len(pose_id)>0:
res = get_result_example(cloth_id, pose_id)
# print(res)
assert os.path.exists(res), res
# res = cv2.imread(res)
return res, "Done! Use the pre-run results directly, the cloth size does not take effect ", mk_guide
else:
try:
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
timeId = int( str(time.time()).replace(".", "") )+random.randint(1000, 9999)
isUpload = upload_pose_img(ApiUrl, OpenId, ApiKey, client_ip, timeId, pose_image)
if isUpload==0:
return None, "fail to upload", ""
elif isUpload==-1:
return None, "There is a running task already, please wait and check the history tab", ""
elif isUpload==-2:
return None, "can not creat task, you have exhausted free trial quota", ""
taskId = publicClothSwap(ApiUrl, OpenId, ApiKey, client_ip, cloth_id, timeId, size)
if taskId==0:
return None, "fail to public you task", ""
max_try = 1
wait_s = 30
for i in range(max_try):
time.sleep(wait_s)
state = getInfRes(ApiUrl, OpenId, ApiKey, client_ip, timeId)
if state=='stateIs-1':
return None, "task failed, it may be that no human was detected, or there may be illegal content, etc. ", ""
elif state=='stateIs0':
return None, "task not public success", ""
elif len(state)>20:
return state, "task finished", ""
elif (not state.startswith('stateIs')):
# return None, 'task is in queue, position is '+str(state)
pass
else:
return None, state, ""
return None, "task has been created successfully, you can refresh the page 5~15 mins latter, and check the following history tab", ""
except Exception as e:
print(e)
return None, "fail to create task", ""
def onLoad(request: gr.Request):
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
his_datas = [None for _ in range(10)]
info = ''
try:
infs = getAllInfs(ApiUrl, OpenId, ApiKey, client_ip)
print(client_ip, 'history infs: ', len(infs))
cnt = 0
finish_n, fail_n, queue_n = 0, 0, 0
for i, inf in enumerate(infs):
if inf['state']==2:
if cnt>4: continue
pose, res = inf['pose'], inf['res']
his_datas[cnt*2] = f"<img src=\"{pose}\" >"
his_datas[cnt*2+1] = f"<img src=\"{res}\" >"
finish_n += 1
cnt += 1
elif inf['state'] in [-1, -2, 0]:
fail_n += 1
elif inf['state'] in [1]:
queue_n += 1
info = f"{client_ip}, you have {finish_n} successed tasks, {queue_n} running tasks, {fail_n} failed tasks."
if fail_n>0:
info = info+" Please upload a half/full-body human image, not just a clothing image!!!"
if queue_n>0:
info = info+" Wait for 3~10 mins and refresh this page, successed results will display in the history tab at the bottom"
time.sleep(3)
except Exception as e:
print(e)
his_datas = his_datas + [info]
return his_datas
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Accordion('upload tips', open=True):
with gr.Row():
gr.HTML(f"<img src=\"{tip1}\" >")
gr.HTML(f"<img src=\"{tip2}\" >")
with gr.Row():
with gr.Column():
with gr.Column():
# cloth_image = gr.Image(type="numpy", value=cloth_examples[0][1], label="")
cloth_image = gr.Image(sources='clipboard', type="filepath", label="",
value=None)
cloth_id = gr.Label(value=cloth_examples[0][0], label="Clothing 3D Model", visible=False)
example = gr.Examples(inputs=[cloth_id, cloth_image],
examples_per_page=3,
examples = cloth_examples)
with gr.Column():
with gr.Column():
# pose_image = gr.Image(source='upload', value=pose_examples[0][1],
# type="numpy", label="")
pose_image = gr.Image(value=None, type="numpy", label="")
pose_id = gr.Label(value=pose_examples[0][0], label="Pose Image", visible=False)
example_pose = gr.Examples(inputs=[pose_id, pose_image],
examples_per_page=3,
examples=pose_examples)
with gr.Column():
with gr.Column():
size_slider = gr.Slider(-2.5, 2.5, value=1, interactive=True, label="clothes size")
info_text = gr.Textbox(value="", interactive=False,
label='runtime information')
run_button = gr.Button(value="Run")
init_res = get_result_example(cloth_examples[0][0], pose_examples[0][0])
res_image = gr.Image(label="result image", value=None, type="filepath")
# res_image = gr.Image(label="result image", value=None, type="numpy")
# res_image = gr.Image(label="result image", value=cv2.imread(init_res),
# type="numpy")
MK01 = gr.Markdown()
with gr.Tab('history'):
with gr.Row():
MK02 = gr.Markdown()
with gr.Row():
his_pose_image1 = gr.HTML()
his_res_image1 = gr.HTML()
with gr.Row():
his_pose_image2 = gr.HTML()
his_res_image2 = gr.HTML()
with gr.Row():
his_pose_image3 = gr.HTML()
his_res_image3 = gr.HTML()
with gr.Row():
his_pose_image4 = gr.HTML()
his_res_image4 = gr.HTML()
with gr.Row():
his_pose_image5 = gr.HTML()
his_res_image5 = gr.HTML()
run_button.click(fn=onClick, inputs=[cloth_id, pose_image, pose_id, size_slider],
outputs=[res_image, info_text, MK01], concurrency_limit=50)
pose_image.upload(fn=onUpload, inputs=[], outputs=[pose_id],)
demo.load(onLoad, inputs=[], outputs=[his_pose_image1, his_res_image1,
his_pose_image2, his_res_image2, his_pose_image3, his_res_image3,
his_pose_image4, his_res_image4, his_pose_image5, his_res_image5,
MK02])
if __name__ == "__main__":
demo.queue(max_size=50)
# demo.queue(concurrency_count=60)
# demo.launch(server_name='0.0.0.0', server_port=225)
demo.launch(server_name='0.0.0.0')
|