Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +52 -0
- model.py +97 -0
- requirements.txt +9 -0
- wav2vec_aligen.py +51 -0
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from scipy.io import wavfile
|
3 |
+
from wav2vec_aligen import speaker_pronunciation_assesment
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
def analyze_audio(audio):
|
8 |
+
# Write the processed audio to a temporary WAV file
|
9 |
+
if audio is None:
|
10 |
+
return 'the audio is missing'
|
11 |
+
temp_filename = 'temp_audio.wav'
|
12 |
+
wavfile.write(temp_filename, audio[0], audio[1])
|
13 |
+
|
14 |
+
|
15 |
+
result = speaker_pronunciation_assesment(temp_filename)
|
16 |
+
accuracy_score = result['pronunciation_accuracy']
|
17 |
+
fluency_score = result['fluency_score']
|
18 |
+
total_score = result['total_score']
|
19 |
+
content_scores = result['content_scores']
|
20 |
+
|
21 |
+
result_markdown = f"""|Language Aspect| Score|
|
22 |
+
|---|---|
|
23 |
+
|Pronunciation Accuracy| {accuracy_score}|
|
24 |
+
|Fluency| {fluency_score}|
|
25 |
+
|Total Score| {total_score}|
|
26 |
+
|Content Score| {content_scores}|
|
27 |
+
"""
|
28 |
+
return result_markdown
|
29 |
+
|
30 |
+
import gradio as gr
|
31 |
+
|
32 |
+
CHOICES = ['Daibers', 'Carbon', 'Reptiles']
|
33 |
+
|
34 |
+
|
35 |
+
def get_paired_text(value):
|
36 |
+
text = f'## {value}'
|
37 |
+
return text
|
38 |
+
|
39 |
+
with gr.Blocks() as demo:
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column():
|
42 |
+
with gr.Row():
|
43 |
+
drp_down = gr.Dropdown(choices=CHOICES, scale=2)
|
44 |
+
show_text_btn = gr.Button("Select", scale=1)
|
45 |
+
read_text = gr.Markdown(label='Listen to speech')
|
46 |
+
show_text_btn.click(get_paired_text, inputs=drp_down, outputs=read_text)
|
47 |
+
audio_area = gr.Audio(label='Reapet the sentence')
|
48 |
+
analyize_audio_btn = gr.Button("Submit", scale=1)
|
49 |
+
with gr.Column():
|
50 |
+
capt_area = gr.Markdown(label='CAPT Scores')
|
51 |
+
analyize_audio_btn.click(analyze_audio, inputs=audio_area, outputs=capt_area)
|
52 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Wav2Vec2BertPreTrainedModel, Wav2Vec2BertModel
|
2 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
from torch.nn import MSELoss
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
class Wav2Vec2BertForSequenceClassification(Wav2Vec2BertPreTrainedModel):
|
9 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert
|
10 |
+
def __init__(self, config):
|
11 |
+
super().__init__(config)
|
12 |
+
|
13 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
14 |
+
raise ValueError(
|
15 |
+
"Sequence classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)"
|
16 |
+
)
|
17 |
+
self.wav2vec2_bert = Wav2Vec2BertModel(config)
|
18 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
19 |
+
if config.use_weighted_layer_sum:
|
20 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
21 |
+
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
22 |
+
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
23 |
+
|
24 |
+
# Initialize weights and apply final processing
|
25 |
+
self.post_init()
|
26 |
+
|
27 |
+
def freeze_base_model(self):
|
28 |
+
"""
|
29 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
30 |
+
be updated during training. Only the classification head will be updated.
|
31 |
+
"""
|
32 |
+
for param in self.wav2vec2_bert.parameters():
|
33 |
+
param.requires_grad = False
|
34 |
+
|
35 |
+
|
36 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert,WAV_2_VEC_2->WAV2VEC2_BERT, input_values->input_features
|
37 |
+
def forward(
|
38 |
+
self,
|
39 |
+
input_features: Optional[torch.Tensor],
|
40 |
+
attention_mask: Optional[torch.Tensor] = None,
|
41 |
+
output_attentions: Optional[bool] = None,
|
42 |
+
output_hidden_states: Optional[bool] = None,
|
43 |
+
return_dict: Optional[bool] = None,
|
44 |
+
labels: Optional[torch.Tensor] = None,
|
45 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
46 |
+
r"""
|
47 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
48 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
49 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
50 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
51 |
+
"""
|
52 |
+
|
53 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
54 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
55 |
+
|
56 |
+
outputs = self.wav2vec2_bert(
|
57 |
+
input_features,
|
58 |
+
attention_mask=attention_mask,
|
59 |
+
output_attentions=output_attentions,
|
60 |
+
output_hidden_states=output_hidden_states,
|
61 |
+
return_dict=return_dict,
|
62 |
+
)
|
63 |
+
|
64 |
+
if self.config.use_weighted_layer_sum:
|
65 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
66 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
67 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
68 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
69 |
+
else:
|
70 |
+
hidden_states = outputs[0]
|
71 |
+
|
72 |
+
hidden_states = self.projector(hidden_states)
|
73 |
+
if attention_mask is None:
|
74 |
+
pooled_output = hidden_states.mean(dim=1)
|
75 |
+
else:
|
76 |
+
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
77 |
+
hidden_states[~padding_mask] = 0.0
|
78 |
+
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
79 |
+
|
80 |
+
logits = self.classifier(pooled_output)
|
81 |
+
logits = nn.functional.relu(logits)
|
82 |
+
|
83 |
+
loss = None
|
84 |
+
if labels is not None:
|
85 |
+
loss_fct = MSELoss()
|
86 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1, self.config.num_labels))
|
87 |
+
|
88 |
+
if not return_dict:
|
89 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
90 |
+
return ((loss,) + output) if loss is not None else output
|
91 |
+
|
92 |
+
return SequenceClassifierOutput(
|
93 |
+
loss=loss,
|
94 |
+
logits=logits,
|
95 |
+
hidden_states=outputs.hidden_states,
|
96 |
+
attentions=outputs.attentions,
|
97 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wave
|
2 |
+
torch
|
3 |
+
optimum
|
4 |
+
scipy
|
5 |
+
numpy
|
6 |
+
resampy
|
7 |
+
gradio
|
8 |
+
librosa
|
9 |
+
transformers
|
wav2vec_aligen.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import librosa
|
3 |
+
import os
|
4 |
+
from model import Wav2Vec2BertForSequenceClassification
|
5 |
+
from transformers import AutoFeatureExtractor
|
6 |
+
# from optimum.bettertransformer import BetterTransformer
|
7 |
+
|
8 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
+
# os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
|
10 |
+
# os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = '1'
|
11 |
+
# os.environ['TRANSFORMERS_VERBOSITY'] = 'error'
|
12 |
+
torch.random.manual_seed(0);
|
13 |
+
# protobuf==3.20.0
|
14 |
+
|
15 |
+
model_name = "arslanarjumand/wav2vec-repeat"
|
16 |
+
processor = AutoFeatureExtractor.from_pretrained(model_name)
|
17 |
+
model = Wav2Vec2BertForSequenceClassification.from_pretrained(model_name).to(device)
|
18 |
+
# model = BetterTransformer.transform(model)
|
19 |
+
|
20 |
+
def load_audio(audio_path, processor):
|
21 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
22 |
+
|
23 |
+
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
24 |
+
return input_values
|
25 |
+
|
26 |
+
@torch.inference_mode()
|
27 |
+
def get_emissions(input_values, model):
|
28 |
+
results = model(input_values,).logits[0]
|
29 |
+
return results
|
30 |
+
|
31 |
+
|
32 |
+
def speaker_pronunciation_assesment(audio_path):
|
33 |
+
input_values = load_audio(audio_path, processor)
|
34 |
+
result_scores = get_emissions(input_values, model)
|
35 |
+
|
36 |
+
pronunciation_score = round(result_scores[0].cpu().item())
|
37 |
+
fluency_score = round(result_scores[1].cpu().item())
|
38 |
+
total_score = round(result_scores[2].cpu().item())
|
39 |
+
content_scores = round(result_scores[3].cpu().item())
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
result = {'pronunciation_accuracy': pronunciation_score,
|
44 |
+
'content_scores': content_scores,
|
45 |
+
'total_score': total_score,
|
46 |
+
'fluency_score': fluency_score}
|
47 |
+
return result
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
pass
|
51 |
+
|