Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,10 +9,10 @@ import torch
|
|
9 |
from diffusers import DiffusionPipeline
|
10 |
from PIL import Image
|
11 |
|
12 |
-
# Create
|
13 |
-
SAVE_DIR = "generated_images"
|
14 |
if not os.path.exists(SAVE_DIR):
|
15 |
-
os.makedirs(SAVE_DIR)
|
16 |
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
@@ -25,7 +25,7 @@ pipeline = pipeline.to(device)
|
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 1024
|
27 |
|
28 |
-
def save_generated_image(image):
|
29 |
# Generate unique filename with timestamp
|
30 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
31 |
unique_id = str(uuid.uuid4())[:8]
|
@@ -34,6 +34,12 @@ def save_generated_image(image):
|
|
34 |
|
35 |
# Save the image
|
36 |
image.save(filepath)
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
return filepath
|
38 |
|
39 |
def load_generated_images():
|
@@ -47,6 +53,28 @@ def load_generated_images():
|
|
47 |
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
48 |
return image_files
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@spaces.GPU(duration=120)
|
51 |
def inference(
|
52 |
prompt: str,
|
@@ -73,23 +101,12 @@ def inference(
|
|
73 |
joint_attention_kwargs={"scale": lora_scale},
|
74 |
).images[0]
|
75 |
|
76 |
-
# Save the generated image
|
77 |
-
save_generated_image(image)
|
78 |
|
79 |
# Return the image, seed, and updated gallery
|
80 |
return image, seed, load_generated_images()
|
81 |
|
82 |
-
def load_predefined_images():
|
83 |
-
predefined_images = [
|
84 |
-
"assets/cm1.webp",
|
85 |
-
"assets/cm2.webp",
|
86 |
-
"assets/cm3.webp",
|
87 |
-
"assets/cm4.webp",
|
88 |
-
"assets/cm5.webp",
|
89 |
-
"assets/cm6.webp",
|
90 |
-
]
|
91 |
-
return predefined_images
|
92 |
-
|
93 |
examples = [
|
94 |
"Claude Monet's 1916 painting, Water Lilies, which is currently on display at the Metropolitan Museum of Art. The painting depicts a tranquil pond with water lilies floating on the surface, surrounded by lush green foliage and a variety of colorful flowers. The colors of the flowers range from bright pinks and purples to deep blues and greens, creating a peaceful and calming atmosphere. [trigger]",
|
95 |
"Claude Monet's 1869 masterpiece, The Magpie, showcasing a snow-covered rural landscape at dawn. A single black magpie perches on a wooden gate, contrasting against the pristine white snow. The scene captures the subtle interplay of light and shadow on the snow's surface, with delicate blue-gray tones in the shadows and warm golden hints where sunlight touches the snow-laden branches. [trigger]",
|
@@ -106,6 +123,8 @@ footer {
|
|
106 |
"""
|
107 |
|
108 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
|
|
|
109 |
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
|
110 |
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
111 |
|
@@ -185,7 +204,8 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
185 |
columns=6,
|
186 |
show_label=False,
|
187 |
value=load_generated_images(),
|
188 |
-
|
|
|
189 |
|
190 |
# Add sample gallery section at the bottom
|
191 |
gr.Markdown("### Claude Monet Style Examples")
|
@@ -197,6 +217,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
197 |
value=load_predefined_images()
|
198 |
)
|
199 |
|
|
|
200 |
gr.on(
|
201 |
triggers=[run_button.click, prompt.submit],
|
202 |
fn=inference,
|
@@ -211,6 +232,12 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
211 |
lora_scale,
|
212 |
],
|
213 |
outputs=[result, seed, generated_gallery],
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
|
216 |
demo.queue()
|
|
|
9 |
from diffusers import DiffusionPipeline
|
10 |
from PIL import Image
|
11 |
|
12 |
+
# Create permanent storage directory
|
13 |
+
SAVE_DIR = "/content/generated_images"
|
14 |
if not os.path.exists(SAVE_DIR):
|
15 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
16 |
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
|
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 1024
|
27 |
|
28 |
+
def save_generated_image(image, prompt):
|
29 |
# Generate unique filename with timestamp
|
30 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
31 |
unique_id = str(uuid.uuid4())[:8]
|
|
|
34 |
|
35 |
# Save the image
|
36 |
image.save(filepath)
|
37 |
+
|
38 |
+
# Save metadata
|
39 |
+
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
40 |
+
with open(metadata_file, "a", encoding="utf-8") as f:
|
41 |
+
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
42 |
+
|
43 |
return filepath
|
44 |
|
45 |
def load_generated_images():
|
|
|
53 |
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
54 |
return image_files
|
55 |
|
56 |
+
class ImageFlagging(gr.FlaggingCallback):
|
57 |
+
def setup(self, components, flagging_dir: str):
|
58 |
+
self.components = components
|
59 |
+
self.flagging_dir = SAVE_DIR
|
60 |
+
|
61 |
+
def flag(self, flag_data, flag_option=None, flag_index=None, username=None) -> int:
|
62 |
+
"""Save image and metadata permanently"""
|
63 |
+
image, prompt = flag_data
|
64 |
+
filepath = save_generated_image(image, prompt)
|
65 |
+
return 0
|
66 |
+
|
67 |
+
def load_predefined_images():
|
68 |
+
predefined_images = [
|
69 |
+
"assets/cm1.webp",
|
70 |
+
"assets/cm2.webp",
|
71 |
+
"assets/cm3.webp",
|
72 |
+
"assets/cm4.webp",
|
73 |
+
"assets/cm5.webp",
|
74 |
+
"assets/cm6.webp",
|
75 |
+
]
|
76 |
+
return predefined_images
|
77 |
+
|
78 |
@spaces.GPU(duration=120)
|
79 |
def inference(
|
80 |
prompt: str,
|
|
|
101 |
joint_attention_kwargs={"scale": lora_scale},
|
102 |
).images[0]
|
103 |
|
104 |
+
# Save the generated image with the prompt
|
105 |
+
save_generated_image(image, prompt)
|
106 |
|
107 |
# Return the image, seed, and updated gallery
|
108 |
return image, seed, load_generated_images()
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
examples = [
|
111 |
"Claude Monet's 1916 painting, Water Lilies, which is currently on display at the Metropolitan Museum of Art. The painting depicts a tranquil pond with water lilies floating on the surface, surrounded by lush green foliage and a variety of colorful flowers. The colors of the flowers range from bright pinks and purples to deep blues and greens, creating a peaceful and calming atmosphere. [trigger]",
|
112 |
"Claude Monet's 1869 masterpiece, The Magpie, showcasing a snow-covered rural landscape at dawn. A single black magpie perches on a wooden gate, contrasting against the pristine white snow. The scene captures the subtle interplay of light and shadow on the snow's surface, with delicate blue-gray tones in the shadows and warm golden hints where sunlight touches the snow-laden branches. [trigger]",
|
|
|
123 |
"""
|
124 |
|
125 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
126 |
+
flagging_callback = ImageFlagging()
|
127 |
+
|
128 |
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
|
129 |
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
130 |
|
|
|
204 |
columns=6,
|
205 |
show_label=False,
|
206 |
value=load_generated_images(),
|
207 |
+
elem_id="generated_gallery"
|
208 |
+
).style(grid=6)
|
209 |
|
210 |
# Add sample gallery section at the bottom
|
211 |
gr.Markdown("### Claude Monet Style Examples")
|
|
|
217 |
value=load_predefined_images()
|
218 |
)
|
219 |
|
220 |
+
# Enable flagging for permanent storage
|
221 |
gr.on(
|
222 |
triggers=[run_button.click, prompt.submit],
|
223 |
fn=inference,
|
|
|
232 |
lora_scale,
|
233 |
],
|
234 |
outputs=[result, seed, generated_gallery],
|
235 |
+
).then(
|
236 |
+
fn=None,
|
237 |
+
inputs=[result, prompt],
|
238 |
+
outputs=None,
|
239 |
+
_js="(res, prompt) => clearInterval(window.GalleryIntervalID)",
|
240 |
+
flagging_callback=flagging_callback
|
241 |
)
|
242 |
|
243 |
demo.queue()
|