Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,289 Bytes
bce439c 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 bce439c 0da220b 0e14842 bce439c 0e14842 bce439c 0e14842 fda85af bce439c fda85af bce439c 0e14842 bce439c 0e14842 bce439c b57fb69 a2b0660 0e14842 bce439c bf65a8f 0e14842 4308608 bf65a8f 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c 0e14842 bce439c fda85af 8937a7d 967d51e 8937a7d edf7d8c a2b0660 8937a7d bce439c 0a94726 0e14842 bce439c fda85af bce439c 0e14842 fda85af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/claude-monet"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image, seed
examples = [
(
"Claude Monet's 1916 painting, Water Lilies, which is currently on display at the Metropolitan Museum of Art. The painting depicts a tranquil pond with water lilies floating on the surface, surrounded by lush green foliage and a variety of colorful flowers. The colors of the flowers range from bright pinks and purples to deep blues and greens, creating a peaceful and calming atmosphere. [trigger]"
),
]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css
) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
fn=lambda x: (Image.open("./example.jpg"), 42),
inputs=[prompt],
outputs=[result, seed],
run_on_click=True,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed],
)
demo.queue()
demo.launch() |