Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# from __future__ import annotations | |
# import gradio as gr | |
# import torch | |
# from app_canny import create_demo as create_demo_canny | |
# # from app_depth import create_demo as create_demo_depth | |
# # from app_recoloring import create_demo as create_demo_recoloring | |
# from model import Model | |
# DESCRIPTION = "# BRIA 2.2 ControlNets" | |
# model = Model(base_model_id='briaai/BRIA-2.2', task_name="Canny") | |
# with gr.Blocks(css="style.css") as demo: | |
# gr.Markdown(DESCRIPTION) | |
# with gr.Tabs(): | |
# with gr.TabItem("Canny"): | |
# create_demo_canny(model.process_canny) | |
# # with gr.TabItem("Depth (Future)"): | |
# # create_demo_canny(model.process_mlsd) | |
# # with gr.TabItem("Recoloring (Future)"): | |
# # create_demo_canny(model.process_scribble) | |
# if __name__ == "__main__": | |
# demo.queue(max_size=20).launch() | |
################################################################ | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
import gradio as gr | |
from torchvision import transforms | |
import spaces | |
controlnet = ControlNetModel.from_pretrained( | |
"briaai/BRIA-2.2-ControlNet-Canny", | |
torch_dtype=torch.float16 | |
).to('cuda') | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"briaai/BRIA-2.2", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
device_map='auto', | |
low_cpu_mem_usage=True, | |
offload_state_dict=True, | |
).to('cuda') | |
pipe.scheduler = EulerAncestralDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
steps_offset=1 | |
) | |
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.force_zeros_for_empty_prompt = False | |
low_threshold = 100 | |
high_threshold = 200 | |
def resize_image(image): | |
image = image.convert('RGB') | |
current_size = image.size | |
if current_size[0] > current_size[1]: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) | |
else: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) | |
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) | |
return resized_image | |
def get_canny_filter(image): | |
if not isinstance(image, np.ndarray): | |
image = np.array(image) | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
return canny_image | |
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): | |
# resize input_image to 1024x1024 | |
input_image = resize_image(input_image) | |
canny_image = get_canny_filter(input_image) | |
images = generate_(prompt, negative_prompt, canny_image, num_steps, controlnet_conditioning_scale, seed) | |
return [canny_image,images[0]] | |
def generate_(prompt, negative_prompt, canny_image, num_steps, controlnet_conditioning_scale, seed): | |
generator = torch.manual_seed(seed) | |
images = pipe( | |
prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
generator=generator, | |
).images | |
return images | |
block = gr.Blocks().queue() | |
with block: | |
gr.Markdown("## BRIA 2.2 ControlNet Canny") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for ControlNet Canny that using | |
<a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone. | |
Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement. | |
</p> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") | |
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1) | |
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) | |
run_button = gr.Button(value="Run") | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto') | |
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
block.launch(debug = True) |