topic_modelling / funcs /helper_functions.py
seanpedrickcase's picture
Added example of how to run function from command line. Updated packages. Embedding model default now smaller and at fp16.
34f1e83
import os
import zipfile
import re
import pandas as pd
import gradio as gr
import gzip
import pickle
import csv
import numpy as np
from bertopic import BERTopic
from datetime import datetime
from typing import List, Tuple
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
def get_or_create_env_var(var_name:str, default_value:str) -> str:
# Get the environment variable if it exists
value = os.environ.get(var_name)
# If it doesn't exist, set it to the default value
if value is None:
os.environ[var_name] = default_value
value = default_value
return value
# Retrieving or setting output folder
env_var_name = 'GRADIO_OUTPUT_FOLDER'
default_value = 'output/'
output_folder = get_or_create_env_var(env_var_name, default_value)
print(f'The value of {env_var_name} is {output_folder}')
def ensure_output_folder_exists():
"""Checks if the 'output/' folder exists, creates it if not."""
folder_name = "output/"
if not os.path.exists(folder_name):
# Create the folder if it doesn't exist
os.makedirs(folder_name)
print(f"Created the 'output/' folder.")
else:
print(f"The 'output/' folder already exists.")
async def get_connection_params(request: gr.Request):
base_folder = ""
if request:
#print("request user:", request.username)
#request_data = await request.json() # Parse JSON body
#print("All request data:", request_data)
#context_value = request_data.get('context')
#if 'context' in request_data:
# print("Request context dictionary:", request_data['context'])
# print("Request headers dictionary:", request.headers)
# print("All host elements", request.client)
# print("IP address:", request.client.host)
# print("Query parameters:", dict(request.query_params))
# To get the underlying FastAPI items you would need to use await and some fancy @ stuff for a live query: https://fastapi.tiangolo.com/vi/reference/request/
#print("Request dictionary to object:", request.request.body())
print("Session hash:", request.session_hash)
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER
CUSTOM_CLOUDFRONT_HEADER_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER', '')
#print(f'The value of CUSTOM_CLOUDFRONT_HEADER is {CUSTOM_CLOUDFRONT_HEADER_var}')
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER_VALUE
CUSTOM_CLOUDFRONT_HEADER_VALUE_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER_VALUE', '')
#print(f'The value of CUSTOM_CLOUDFRONT_HEADER_VALUE_var is {CUSTOM_CLOUDFRONT_HEADER_VALUE_var}')
if CUSTOM_CLOUDFRONT_HEADER_var and CUSTOM_CLOUDFRONT_HEADER_VALUE_var:
if CUSTOM_CLOUDFRONT_HEADER_var in request.headers:
supplied_cloudfront_custom_value = request.headers[CUSTOM_CLOUDFRONT_HEADER_var]
if supplied_cloudfront_custom_value == CUSTOM_CLOUDFRONT_HEADER_VALUE_var:
print("Custom Cloudfront header found:", supplied_cloudfront_custom_value)
else:
raise(ValueError, "Custom Cloudfront header value does not match expected value.")
# Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash.
if request.username:
out_session_hash = request.username
base_folder = "user-files/"
elif 'x-cognito-id' in request.headers:
out_session_hash = request.headers['x-cognito-id']
base_folder = "user-files/"
print("Cognito ID found:", out_session_hash)
else:
out_session_hash = request.session_hash
base_folder = "temp-files/"
# print("Cognito ID not found. Using session hash as save folder:", out_session_hash)
output_folder = base_folder + out_session_hash + "/"
#if bucket_name:
# print("S3 output folder is: " + "s3://" + bucket_name + "/" + output_folder)
return out_session_hash, output_folder
else:
print("No session parameters found.")
return "",""
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
elif filename.endswith('.pkl.gz'):
return 'pkl.gz'
elif filename.endswith('.pkl'):
return 'pkl'
elif filename.endswith('.npz'):
return 'npz'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
print("Loading in file")
if file_type == 'csv':
file = pd.read_csv(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'xlsx':
file = pd.read_excel(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'parquet':
file = pd.read_parquet(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'pkl.gz':
with gzip.open(filename, 'rb') as file:
file = pickle.load(file)
#file = pd.read_pickle(filename)
elif file_type == 'pkl':
file = BERTopic.load(filename)
elif file_type == 'npz':
file = np.load(filename)['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in filename:
file /= 100
print("File load complete")
return file
def initial_file_load(in_file):
'''
When file is loaded, update the column dropdown choices and write to relevant data states.
'''
new_choices = []
concat_choices = []
custom_labels = pd.DataFrame()
topic_model = None
embeddings = np.array([])
# If in_file is a string file path, otherwise assume it is a Gradio file input component
if isinstance(in_file, str):
file_list = [in_file]
else:
file_list = [string.name for string in in_file]
data_file_names = [string for string in file_list if "npz" not in string.lower() and "pkl" not in string.lower() and "topic_list.csv" not in string.lower()]
if data_file_names:
data_file_name = data_file_names[0]
df = read_file(data_file_name)
data_file_name_no_ext = get_file_path_end(data_file_name)
new_choices = list(df.columns)
concat_choices.extend(new_choices)
output_text = "Data file loaded."
else:
error = "No data file provided."
print(error)
output_text = error
model_file_names = [string for string in file_list if "pkl" in string.lower()]
if model_file_names:
model_file_name = model_file_names[0]
topic_model = read_file(model_file_name)
output_text = "Bertopic model loaded."
embedding_file_names = [string for string in file_list if "npz" in string.lower()]
if embedding_file_names:
embedding_file_name = embedding_file_names[0]
embeddings = read_file(embedding_file_name)
output_text = "Embeddings loaded."
label_file_names = [string for string in file_list if "topic_list" in string.lower()]
if label_file_names:
label_file_name = label_file_names[0]
custom_labels = read_file(label_file_name)
output_text = "Labels loaded."
#The np.array([]) at the end is for clearing the embedding state when a new file is loaded
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, output_text, topic_model, embeddings, data_file_name_no_ext, custom_labels, df
def custom_regex_load(in_file):
'''
When file is loaded, update the column dropdown choices and write to relevant data states.
'''
custom_regex = pd.DataFrame()
# If in_file is a string file path, otherwise assume it is a Gradio file input component
if isinstance(in_file, str):
file_list = [in_file]
else:
file_list = [string.name for string in in_file]
regex_file_names = [string for string in file_list if "csv" in string.lower()]
if regex_file_names:
regex_file_name = regex_file_names[0]
custom_regex = pd.read_csv(regex_file_name, low_memory=False, header=None)
#regex_file_name_no_ext = get_file_path_end(regex_file_name)
output_text = "Data file loaded."
print(output_text)
else:
error = "No regex file provided."
print(error)
output_text = error
return error, custom_regex
return output_text, custom_regex
def get_file_path_end(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def get_file_path_end_with_ext(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
print("filename_end:", filename_end)
return filename_end
# Zip the above to export file
def zip_folder(folder_path, output_zip_file):
# Create a ZipFile object in write mode
with zipfile.ZipFile(output_zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf:
# Walk through the directory
for root, dirs, files in os.walk(folder_path):
for file in files:
# Create a complete file path
file_path = os.path.join(root, file)
# Add file to the zip file
# The arcname argument sets the archive name, i.e., the name within the zip file
zipf.write(file_path, arcname=os.path.relpath(file_path, folder_path))
def delete_files_in_folder(folder_path):
# Check if the folder exists
if not os.path.exists(folder_path):
print(f"The folder {folder_path} does not exist.")
return
# Iterate over all files in the folder and remove each
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
else:
print(f"Skipping {file_path} as it is a directory")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
def save_topic_outputs(topic_model: BERTopic, data_file_name_no_ext: str, output_list: List[str], docs: List[str], save_topic_model: bool, prepared_docs: pd.DataFrame, split_sentence_drop: str, output_folder: str = output_folder, progress: gr.Progress = gr.Progress()) -> Tuple[List[str], str]:
"""
Save the outputs of a topic model to specified files.
Args:
topic_model (BERTopic): The topic model object.
data_file_name_no_ext (str): The base name of the data file without extension.
output_list (List[str]): List to store the output file names.
docs (List[str]): List of documents.
save_topic_model (bool): Flag to save the topic model.
prepared_docs (pd.DataFrame): DataFrame containing prepared documents.
split_sentence_drop (str): Option to split sentences ("Yes" or "No").
output_folder (str, optional): Folder to save the output files. Defaults to output_folder.
progress (gr.Progress, optional): Progress tracker. Defaults to gr.Progress().
Returns:
Tuple[List[str], str]: A tuple containing the list of output file names and a status message.
"""
progress(0.7, desc= "Checking data")
topic_dets = topic_model.get_topic_info()
if topic_dets.shape[0] == 1:
topic_det_output_name = output_folder + "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topic_dets.to_csv(topic_det_output_name)
output_list.append(topic_det_output_name)
return output_list, "No topics found, original file returned"
progress(0.8, desc= "Saving output")
topic_det_output_name = output_folder + "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topic_dets.to_csv(topic_det_output_name)
output_list.append(topic_det_output_name)
doc_det_output_name = output_folder + "doc_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
## Check that the following columns exist in the dataframe, keep only the ones that exist
columns_to_check = ["Document", "Topic", "Name", "Probability", "Representative_document"]
columns_found = [column for column in columns_to_check if column in topic_model.get_document_info(docs).columns]
doc_dets = topic_model.get_document_info(docs)[columns_found]
### If there are full topic probabilities, join these on to the document details df
def is_valid_dataframe(df):
"""
Checks if the given object is a non-empty pandas DataFrame.
Args:
df: The object to check.
Returns:
True if df is a non-empty DataFrame, False otherwise.
"""
if df is None: # Check for None first
return False
return isinstance(df, pd.DataFrame) and not df.empty
if is_valid_dataframe(topic_model.probabilities_):
doc_dets = doc_dets.merge(topic_model.probabilities_, left_index=True, right_index=True, how="left")
# If you have created a 'sentence split' dataset from the cleaning options, map these sentences back to the original document.
try:
if split_sentence_drop == "Yes":
doc_dets = doc_dets.merge(prepared_docs[['document_index']], how = "left", left_index=True, right_index=True)
doc_dets = doc_dets.rename(columns={"document_index": "parent_document_index"}, errors='ignore')
# 1. Group by Parent Document Index:
grouped = doc_dets.groupby('parent_document_index')
# 2. Aggregate Topics and Probabilities:
# def aggregate_topics(group):
# original_text = ' '.join(group['Document'])
# topics = group['Topic'].tolist()
# if 'Name' in group.columns:
# topic_names = group['Name'].tolist()
# else:
# topic_names = None
# if 'Probability' in group.columns:
# probabilities = group['Probability'].tolist()
# else:
# probabilities = None # Or any other default value you prefer
# return pd.Series({'Document':original_text, 'Topic numbers': topics, 'Topic names': topic_names, 'Probabilities': probabilities})
def aggregate_topics(group):
original_text = ' '.join(group['Document'])
# Filter out topics starting with '-1'
topics = [topic for topic in group['Topic'].tolist() if not str(topic).startswith('-1')]
if 'Name' in group.columns:
# Filter out topic names corresponding to excluded topics
topic_names = [name for topic, name in zip(group['Topic'], group['Name'].tolist()) if not str(topic).startswith('-1')]
else:
topic_names = None
if 'Probability' in group.columns:
# Filter out probabilities corresponding to excluded topics
probabilities = [prob for topic, prob in zip(group['Topic'], group['Probability'].tolist()) if not str(topic).startswith('-1')]
else:
probabilities = None
return pd.Series({'Document': original_text, 'Topic numbers': topics, 'Topic names': topic_names, 'Probabilities': probabilities})
#result_df = grouped.apply(aggregate_topics).reset_index()
doc_det_agg = grouped.apply(lambda x: aggregate_topics(x)).reset_index()
# Join back original text
#doc_det_agg = doc_det_agg.merge(original_data[[in_colnames_list_first]], how = "left", left_index=True, right_index=True)
doc_det_agg_output_name = output_folder + "doc_details_agg_" + data_file_name_no_ext + "_" + today_rev + ".csv"
doc_det_agg.to_csv(doc_det_agg_output_name)
output_list.append(doc_det_agg_output_name)
except Exception as e:
print("Creating aggregate document details failed, error:", e)
# Save document details to file
doc_dets.to_csv(doc_det_output_name)
output_list.append(doc_det_output_name)
if "CustomName" in topic_dets.columns:
topics_text_out_str = str(topic_dets["CustomName"])
else:
topics_text_out_str = str(topic_dets["Name"])
output_text = "Topics: " + topics_text_out_str
# Save topic model to file
if save_topic_model == "Yes":
print("Saving BERTopic model in .pkl format.")
#folder_path = output_folder #"output_model/"
#if not os.path.exists(folder_path):
# Create the folder
# os.makedirs(folder_path)
topic_model_save_name_pkl = output_folder + data_file_name_no_ext + "_topics_" + today_rev + ".pkl"# + ".safetensors"
topic_model_save_name_zip = topic_model_save_name_pkl + ".zip"
# Clear folder before replacing files
#delete_files_in_folder(topic_model_save_name_pkl)
topic_model.save(topic_model_save_name_pkl, serialization='pickle', save_embedding_model=False, save_ctfidf=False)
# Zip file example
#zip_folder(topic_model_save_name_pkl, topic_model_save_name_zip)
output_list.append(topic_model_save_name_pkl)
return output_list, output_text