Spaces:
Running
Running
Sean-Case
Fixed llm_config, environmental variable, zero shot topic model errors with quick embeddings
ff32b4a
import os | |
#from ctransformers import AutoModelForCausalLM | |
#from transformers import AutoTokenizer, pipeline | |
from bertopic.representation import LlamaCPP | |
from llama_cpp import Llama | |
from pydantic import BaseModel | |
import torch.cuda | |
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, TextGeneration | |
from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start | |
chosen_prompt = open_hermes_prompt # stablelm_prompt | |
chosen_start_tag = open_hermes_start # stablelm_start | |
# Find model file | |
def find_model_file(hf_model_name, hf_model_file, search_folder): | |
hf_loc = search_folder #os.environ["HF_HOME"] | |
hf_sub_loc = search_folder + "/hub/" #os.environ["HF_HOME"] | |
hf_model_name_path = hf_sub_loc + 'models--' + hf_model_name.replace("/","--") | |
print(hf_model_name_path) | |
def find_file(root_folder, file_name): | |
for root, dirs, files in os.walk(root_folder): | |
if file_name in files: | |
return os.path.join(root, file_name) | |
return None | |
# Example usage | |
folder_path = hf_model_name_path # Replace with your folder path | |
file_to_find = hf_model_file # Replace with the file name you're looking for | |
found_file = find_file(folder_path, file_to_find) # os.environ["HF_HOME"] | |
if found_file: | |
print(f"File found: {found_file}") | |
return found_file | |
else: | |
error = "File not found." | |
print(error, " Downloading model from hub") | |
from huggingface_hub import hf_hub_download | |
hf_hub_download(repo_id=hf_model_name, filename='phi-2-orange.Q5_K_M.gguf') | |
found_file = find_file(folder_path, file_to_find) | |
return found_file | |
# Currently set n_gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda | |
if torch.cuda.is_available(): | |
torch_device = "gpu" | |
low_resource_mode = "No" | |
n_gpu_layers = 100 | |
else: | |
torch_device = "cpu" | |
low_resource_mode = "Yes" | |
n_gpu_layers = 0 | |
low_resource_mode = "No" # Override for testing | |
#print("Running on device:", torch_device) | |
n_threads = torch.get_num_threads() | |
print("CPU n_threads:", n_threads) | |
# Default Model parameters | |
temperature: float = 0.1 | |
top_k: int = 3 | |
top_p: float = 1 | |
repeat_penalty: float = 1.1 | |
last_n_tokens_size: int = 128 | |
max_tokens: int = 500 | |
seed: int = 42 | |
reset: bool = True | |
stream: bool = False | |
n_threads: int = n_threads | |
n_batch:int = 256 | |
n_ctx:int = 4096 | |
sample:bool = True | |
trust_remote_code:bool =True | |
class LLamacppInitConfigGpu(BaseModel): | |
last_n_tokens_size: int | |
seed: int | |
n_threads: int | |
n_batch: int | |
n_ctx: int | |
n_gpu_layers: int | |
temperature: float | |
top_k: int | |
top_p: float | |
repeat_penalty: float | |
max_tokens: int | |
reset: bool | |
stream: bool | |
stop: str | |
trust_remote_code:bool | |
def update_gpu(self, new_value: int): | |
self.n_gpu_layers = new_value | |
llm_config = LLamacppInitConfigGpu(last_n_tokens_size=last_n_tokens_size, | |
seed=seed, | |
n_threads=n_threads, | |
n_batch=n_batch, | |
n_ctx=n_ctx, | |
n_gpu_layers=n_gpu_layers, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repeat_penalty=repeat_penalty, | |
max_tokens=max_tokens, | |
reset=reset, | |
stream=stream, | |
stop=chosen_start_tag, | |
trust_remote_code=trust_remote_code) | |
## Create representation model parameters ## | |
# KeyBERT | |
keybert = KeyBERTInspired() | |
def create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag): | |
if create_llm_topic_labels == "Yes": | |
# Use llama.cpp to load in model | |
# Check for HF_HOME environment variable and supply a default value if it's not found (current folder) | |
hf_home_value = os.getenv("HF_HOME", '.') | |
found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value) | |
llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx) #**llm_config.model_dump())# | |
#print(llm.n_gpu_layers) | |
llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump()) | |
# All representation models | |
representation_model = { | |
"KeyBERT": keybert, | |
"Mistral": llm_model | |
} | |
elif create_llm_topic_labels == "No": | |
representation_model = {"KeyBERT": keybert} | |
# Deprecated example using CTransformers. This package is not really used anymore | |
#model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(llm_config)) | |
#tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9") | |
#generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer) | |
# Text generation with Llama 2 | |
#mistral_capybara = TextGeneration(generator, prompt=capybara_prompt) | |
#mistral_hermes = TextGeneration(generator, prompt=open_hermes_prompt) | |
return representation_model | |