topic_modelling / funcs /embeddings.py
Sean-Case
Fixed llm_config, environmental variable, zero shot topic model errors with quick embeddings
ff32b4a
raw
history blame
3.14 kB
import time
import numpy as np
from torch import cuda
from sklearn.pipeline import make_pipeline
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from umap import UMAP
random_seed = 42
if cuda.is_available():
torch_device = "gpu"
else:
torch_device = "cpu"
def make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_model, return_intermediate_files, embeddings_super_compress, low_resource_mode_opt, reduce_embeddings="Yes"):
embeddings_file_names = [string.lower() for string in file_list if "embedding" in string.lower()]
if embeddings_file_names:
print("Loading embeddings from file.")
embeddings_out = np.load(embeddings_file_names[0])['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in embeddings_file_names[0]:
embeddings_out /= 100
if not embeddings_file_names:
tic = time.perf_counter()
print("Starting to embed documents.")
# Custom model
# If on CPU, don't resort to embedding models
if low_resource_mode_opt == "Yes":
print("Creating simplified 'sparse' embeddings based on TfIDF")
embedding_model = make_pipeline(
TfidfVectorizer(),
TruncatedSVD(100)
)
# Fit the pipeline to the text data
embedding_model.fit(docs)
# Transform text data to embeddings
embeddings_out = embedding_model.transform(docs)
#embeddings_out = embedding_model.encode(sentences=docs, show_progress_bar = True, batch_size = 32)
elif low_resource_mode_opt == "No":
print("Creating dense embeddings based on transformers model")
embeddings_out = embedding_model.encode(sentences=docs, max_length=1024, show_progress_bar = True, batch_size = 32) # For Jina # #
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
print(time_out)
# If you want to save your files for next time
if return_intermediate_files == "Yes":
print("Saving embeddings to file")
if embeddings_super_compress == "No":
semantic_search_file_name = data_file_name_no_ext + '_' + 'embeddings.npz'
np.savez_compressed(semantic_search_file_name, embeddings_out)
else:
semantic_search_file_name = data_file_name_no_ext + '_' + 'embedding_compress.npz'
embeddings_out_round = np.round(embeddings_out, 3)
embeddings_out_round *= 100 # Rounding not currently used
np.savez_compressed(semantic_search_file_name, embeddings_out_round)
# Pre-reduce embeddings for visualisation purposes
if reduce_embeddings == "Yes":
reduced_embeddings = UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine', random_state=random_seed).fit_transform(embeddings_out)
return embeddings_out, reduced_embeddings
return embeddings_out, None