Spaces:
Running
Running
File size: 14,942 Bytes
9dbf344 4cfed8e 9dbf344 ff32b4a 9dbf344 ff32b4a 9dbf344 4cfed8e 9dbf344 4cfed8e 9dbf344 4cfed8e 9dbf344 4cfed8e 9dbf344 ff32b4a 9dbf344 4cfed8e 9dbf344 ff32b4a 9dbf344 ff32b4a 9dbf344 4cfed8e ff32b4a 4cfed8e 9dbf344 ff32b4a 9dbf344 4cfed8e ff32b4a 4cfed8e ff32b4a 9dbf344 ff32b4a 4cfed8e 9dbf344 ff32b4a 9dbf344 ff32b4a 4cfed8e 9dbf344 ff32b4a 9dbf344 4cfed8e 9dbf344 ff32b4a 9dbf344 4cfed8e 9dbf344 ff32b4a 9dbf344 4cfed8e 9dbf344 4cfed8e 9dbf344 4cfed8e ff32b4a 9dbf344 ff32b4a 9dbf344 4cfed8e 9dbf344 4cfed8e ff32b4a 4cfed8e ff32b4a 4cfed8e ff32b4a 9dbf344 4cfed8e ff32b4a 9dbf344 4cfed8e 9dbf344 ff32b4a 9dbf344 ff32b4a 9dbf344 ff32b4a 9dbf344 4cfed8e 9dbf344 ff32b4a 4cfed8e ff32b4a 4cfed8e 9dbf344 4cfed8e 9dbf344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import gradio as gr
from datetime import datetime
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import CountVectorizer
from transformers import AutoModel, AutoTokenizer
from transformers.pipelines import pipeline
from sklearn.pipeline import make_pipeline
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
import funcs.anonymiser as anon
from umap import UMAP
from torch import cuda, backends, version
random_seed = 42
# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "gpu"
print("Cuda version installed is: ", version.cuda)
low_resource_mode = "No"
#os.system("nvidia-smi")
else:
torch_device = "cpu"
low_resource_mode = "Yes"
print("Device used is: ", torch_device)
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from bertopic import BERTopic
#from sentence_transformers import SentenceTransformer
#from bertopic.backend._hftransformers import HFTransformerBackend
#from cuml.manifold import UMAP
#umap_model = UMAP(n_components=5, n_neighbors=15, min_dist=0.0)
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
from funcs.helper_functions import dummy_function, put_columns_in_df, read_file, get_file_path_end, zip_folder, delete_files_in_folder
#from funcs.representation_model import representation_model
from funcs.embeddings import make_or_load_embeddings
# Load embeddings
#embedding_model_name = "BAAI/bge-small-en-v1.5"
#embedding_model = SentenceTransformer(embedding_model_name)
# Pinning a Jina revision for security purposes: https://www.baseten.co/blog/pinning-ml-model-revisions-for-compatibility-and-security/
# Save Jina model locally as described here: https://huggingface.co/jinaai/jina-embeddings-v2-base-en/discussions/29
embeddings_name = "jinaai/jina-embeddings-v2-small-en"
local_embeddings_location = "model/jina/"
revision_choice = "b811f03af3d4d7ea72a7c25c802b21fc675a5d99"
if low_resource_mode == "No":
try:
embedding_model = AutoModel.from_pretrained(local_embeddings_location, revision = revision_choice, trust_remote_code=True,local_files_only=True, device_map="auto")
except:
embedding_model = AutoModel.from_pretrained(embeddings_name, revision = revision_choice, trust_remote_code=True, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-small-en")
embedding_model_pipe = pipeline("feature-extraction", model=embedding_model, tokenizer=tokenizer)
elif low_resource_mode == "Yes":
embedding_model_pipe = make_pipeline(
TfidfVectorizer(),
TruncatedSVD(2) # 100 # set to 2 to be compatible with zero shot topics - can't be higher than number of topics
)
# Model used for representing topics
hf_model_name = 'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF' # 'second-state/stablelm-2-zephyr-1.6b-GGUF'
hf_model_file = 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf'
def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, in_label, anonymise_drop, return_intermediate_files, embeddings_super_compress, low_resource_mode, create_llm_topic_labels):
output_list = []
file_list = [string.name for string in in_file]
data_file_names = [string.lower() for string in file_list if "tokenised" not in string and "npz" not in string.lower() and "gz" not in string.lower()]
data_file_name = data_file_names[0]
data_file_name_no_ext = get_file_path_end(data_file_name)
in_colnames_list_first = in_colnames[0]
if in_label:
in_label_list_first = in_label[0]
else:
in_label_list_first = in_colnames_list_first
if anonymise_drop == "Yes":
in_files_anon_col, anonymisation_success = anon.anonymise_script(in_files, in_colnames_list_first, anon_strat="replace")
in_files[in_colnames_list_first] = in_files_anon_col[in_colnames_list_first]
anonymise_data_name = "anonymised_data.csv"
in_files.to_csv(anonymise_data_name)
output_list.append(anonymise_data_name)
docs = list(in_files[in_colnames_list_first].str.lower())
label_col = in_files[in_label_list_first]
# Check if embeddings are being loaded in
## Load in pre-embedded file if exists
file_list = [string.name for string in in_file]
print("Low resource mode: ", low_resource_mode)
if low_resource_mode == "No":
print("Choosing high resource Jina transformer model")
try:
embedding_model = AutoModel.from_pretrained(local_embeddings_location, revision = revision_choice, trust_remote_code=True,local_files_only=True, device_map="auto")
except:
embedding_model = AutoModel.from_pretrained(embeddings_name, revision = revision_choice, trust_remote_code=True, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-small-en")
embedding_model_pipe = pipeline("feature-extraction", model=embedding_model, tokenizer=tokenizer)
elif low_resource_mode == "Yes":
print("Choosing low resource TfIDF model")
embedding_model_pipe = make_pipeline(
TfidfVectorizer(),
TruncatedSVD(100) # 100 # To be compatible with zero shot, this needs to be lower than number of suggested topics
)
embedding_model = embedding_model_pipe
embeddings_out, reduced_embeddings = make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_model, return_intermediate_files, embeddings_super_compress, low_resource_mode, create_llm_topic_labels)
vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
print("Create LLM topic labels:", create_llm_topic_labels)
representation_model = create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag)
if not candidate_topics:
umap_model = UMAP(n_neighbors=15, n_components=5, random_state=random_seed)
topic_model = BERTopic( embedding_model=embedding_model_pipe,
vectorizer_model=vectoriser_model,
umap_model=umap_model,
min_topic_size= min_docs_slider,
nr_topics = max_topics_slider,
representation_model=representation_model,
verbose = True)
topics_text, probs = topic_model.fit_transform(docs, embeddings_out)
# Do this if you have pre-defined topics
else:
if low_resource_mode == "Yes":
error_message = "Zero shot topic modelling currently not compatible with low-resource embeddings. Please change this option to 'No' on the options tab and retry."
print(error_message)
return error_message, output_list, None
zero_shot_topics = read_file(candidate_topics.name)
zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower())
if len(zero_shot_topics_lower) < 15:
umap_neighbours = len(zero_shot_topics_lower)
else: umap_neighbours = 15
umap_model = UMAP(n_neighbors=umap_neighbours, n_components=5, random_state=random_seed)
topic_model = BERTopic( embedding_model=embedding_model_pipe,
vectorizer_model=vectoriser_model,
umap_model=umap_model,
min_topic_size = min_docs_slider,
nr_topics = max_topics_slider,
zeroshot_topic_list = zero_shot_topics_lower,
zeroshot_min_similarity = 0.7,
representation_model=representation_model,
verbose = True)
topics_text, probs = topic_model.fit_transform(docs, embeddings_out)
if not topics_text:
return "No topics found.", data_file_name, None
else:
print("Preparing topic model outputs.")
topic_dets = topic_model.get_topic_info()
#print(topic_dets.columns)
if topic_dets.shape[0] == 1:
topic_det_output_name = "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topic_dets.to_csv(topic_det_output_name)
output_list.append(topic_det_output_name)
return "No topics found, original file returned", output_list, None
# Replace original labels with LLM labels
if "Mistral" in topic_model.get_topic_info().columns:
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["Mistral"].values()]
topic_model.set_topic_labels(llm_labels)
else:
topic_model.set_topic_labels(list(topic_dets["Name"]))
# Outputs
topic_det_output_name = "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topic_dets.to_csv(topic_det_output_name)
output_list.append(topic_det_output_name)
doc_det_output_name = "doc_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
doc_dets = topic_model.get_document_info(docs)[["Document", "Topic", "Name", "Representative_document"]] # "Probability",
doc_dets.to_csv(doc_det_output_name)
output_list.append(doc_det_output_name)
topics_text_out_str = str(topic_dets["Name"])
output_text = "Topics: " + topics_text_out_str
#if low_resource_mode == "No":
topic_model_save_name_folder = "output_model/" + data_file_name_no_ext + "_topics_" + today_rev# + ".safetensors"
topic_model_save_name_zip = topic_model_save_name_folder + ".zip"
# Clear folder before replacing files
delete_files_in_folder(topic_model_save_name_folder)
topic_model.save(topic_model_save_name_folder, serialization='safetensors', save_embedding_model=True, save_ctfidf=False)
# Zip file example
zip_folder(topic_model_save_name_folder, topic_model_save_name_zip)
output_list.append(topic_model_save_name_zip)
# Visualise the topics:
topics_vis = topic_model.visualize_documents(label_col, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True)
return output_text, output_list, topics_vis
# , topic_model_save_name
# ## Gradio app - extract topics
block = gr.Blocks(theme = gr.themes.Base())
with block:
data_state = gr.State(pd.DataFrame())
gr.Markdown(
"""
# Topic modeller
Generate topics from open text in tabular data. Upload a file (csv, xlsx, or parquet), then specify the columns that you want to use to generate topics and use for labels in the visualisation. If you have an embeddings .npz file of the text made using the 'jina-embeddings-v2-small-en' model, you can load this in at the same time to skip the first modelling step. If you have a pre-defined list of topics, you can upload this as a csv file under 'I have my own list of topics...'. Further configuration options are available under the 'Options' tab.
""")
with gr.Tab("Load files and find topics"):
with gr.Accordion("Load data file", open = True):
in_files = gr.File(label="Input text from file", file_count="multiple")
with gr.Row():
in_colnames = gr.Dropdown(choices=["Choose a column"], multiselect = True, label="Select column to find topics (first will be chosen if multiple selected).")
in_label = gr.Dropdown(choices=["Choose a column"], multiselect = True, label="Select column to for labelling documents in the output visualisation.")
with gr.Accordion("I have my own list of topics (zero shot topic modelling).", open = False):
candidate_topics = gr.File(label="Input topics from file (csv). File should have at least one column with a header and topic keywords in cells below. Topics will be taken from the first column of the file. Currently not compatible with low-resource embeddings.")
with gr.Row():
min_docs_slider = gr.Slider(minimum = 2, maximum = 1000, value = 15, step = 1, label = "Minimum number of documents needed to create topic")
max_topics_slider = gr.Slider(minimum = 2, maximum = 500, value = 3, step = 1, label = "Maximum number of topics")
with gr.Row():
topics_btn = gr.Button("Extract topics")
with gr.Row():
output_single_text = gr.Textbox(label="Output example (first example in dataset)")
output_file = gr.File(label="Output file")
plot = gr.Plot(label="Visualise your topics here:")
with gr.Tab("Options"):
with gr.Accordion("Data load and processing options", open = True):
with gr.Row():
anonymise_drop = gr.Dropdown(value = "No", choices=["Yes", "No"], multiselect=False, label="Anonymise data on file load. Names and other details are replaced with tags e.g. '<person>'.")
return_intermediate_files = gr.Dropdown(label = "Return intermediate processing files from file preparation. Files can be loaded in to save processing time in future.", value="No", choices=["Yes", "No"])
embedding_super_compress = gr.Dropdown(label = "Round embeddings to three dp for smaller files with less accuracy.", value="No", choices=["Yes", "No"])
with gr.Row():
low_resource_mode_opt = gr.Dropdown(label = "Use low resource embeddings model based on TF-IDF (consider if embedding generation is slow).", value="No", choices=["Yes", "No"])
create_llm_topic_labels = gr.Dropdown(label = "Create LLM-generated topic labels.", value="No", choices=["Yes", "No"])
# Update column names dropdown when file uploaded
in_files.upload(fn=put_columns_in_df, inputs=[in_files], outputs=[in_colnames, in_label, data_state])
in_colnames.change(dummy_function, in_colnames, None)
topics_btn.click(fn=extract_topics, inputs=[data_state, in_files, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, in_label, anonymise_drop, return_intermediate_files, embedding_super_compress, low_resource_mode_opt, create_llm_topic_labels], outputs=[output_single_text, output_file, plot], api_name="topics")
block.queue().launch(debug=True)#, server_name="0.0.0.0", ssl_verify=False, server_port=7860)
|