Spaces:
Sleeping
Sleeping
File size: 11,217 Bytes
9dbf344 72f2310 9dbf344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
#os.environ["TOKENIZERS_PARALLELISM"] = "true"
#os.environ["HF_HOME"] = "/mnt/c/..."
#os.environ["CUDA_PATH"] = "/mnt/c/..."
#print(os.environ["HF_HOME"])
import gradio as gr
from datetime import datetime
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import CountVectorizer
from transformers import AutoModel
import funcs.anonymiser as anon
from torch import cuda, backends, version
# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "gpu"
print("Cuda version installed is: ", version.cuda)
low_resource_mode = "No"
#os.system("nvidia-smi")
else:
torch_device = "cpu"
low_resource_mode = "Yes"
print("Device used is: ", torch_device)
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from bertopic import BERTopic
#from sentence_transformers import SentenceTransformer
#from bertopic.backend._hftransformers import HFTransformerBackend
#from cuml.manifold import UMAP
#umap_model = UMAP(n_components=5, n_neighbors=15, min_dist=0.0)
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
from funcs.helper_functions import dummy_function, put_columns_in_df, read_file, get_file_path_end
from funcs.representation_model import representation_model
from funcs.embeddings import make_or_load_embeddings
# Load embeddings
#embedding_model_name = "BAAI/bge-small-en-v1.5"
#embedding_model = SentenceTransformer(embedding_model_name)
# Pinning a Jina revision for security purposes: https://www.baseten.co/blog/pinning-ml-model-revisions-for-compatibility-and-security/
# Save Jina model locally as described here: https://huggingface.co/jinaai/jina-embeddings-v2-base-en/discussions/29
embeddings_name = "jinaai/jina-embeddings-v2-small-en"
local_embeddings_location = "model/jina/"
revision_choice = "b811f03af3d4d7ea72a7c25c802b21fc675a5d99"
try:
embedding_model = AutoModel.from_pretrained(local_embeddings_location, revision = revision_choice, trust_remote_code=True,local_files_only=True, device_map="auto")
except:
embedding_model = AutoModel.from_pretrained(embeddings_name, revision = revision_choice, trust_remote_code=True, device_map="auto")
def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, in_label, anonymise_drop, return_intermediate_files, embeddings_super_compress, low_resource_mode_opt):
file_list = [string.name for string in in_file]
data_file_names = [string.lower() for string in file_list if "tokenised" not in string and "npz" not in string.lower() and "gz" not in string.lower()]
data_file_name = data_file_names[0]
data_file_name_no_ext = get_file_path_end(data_file_name)
in_colnames_list_first = in_colnames[0]
if in_label:
in_label_list_first = in_label[0]
else:
in_label_list_first = in_colnames_list_first
if anonymise_drop == "Yes":
in_files_anon_col, anonymisation_success = anon.anonymise_script(in_files, in_colnames_list_first, anon_strat="replace")
in_files[in_colnames_list_first] = in_files_anon_col[in_colnames_list_first]
in_files.to_csv("anonymised_data.csv")
docs = list(in_files[in_colnames_list_first].str.lower())
label_col = in_files[in_label_list_first]
# Check if embeddings are being loaded in
## Load in pre-embedded file if exists
file_list = [string.name for string in in_file]
embeddings_out, reduced_embeddings = make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_model, return_intermediate_files, embeddings_super_compress, low_resource_mode_opt)
# all_lengths = [len(embedding) for embedding in embeddings_out]
# if len(set(all_lengths)) > 1:
# print("Inconsistent lengths found in embeddings_out:", set(all_lengths))
# else:
# print("All lengths are the same.")
# print("Embeddings type: ", type(embeddings_out))
# if isinstance(embeddings_out, np.ndarray):
# print("my_object is a NumPy ndarray")
# else:
# print("my_object is not a NumPy ndarray")
# Clustering set to K-means (not used)
#cluster_model = KMeans(n_clusters=max_topics_slider)
# Countvectoriser removes stopwords, combines terms up to 2 together:
if min_docs_slider < 3:
min_df_val = min_docs_slider
else:
min_df_val = 3
print(min_df_val)
vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
if not candidate_topics:
topic_model = BERTopic( embedding_model=embedding_model,
#hdbscan_model=cluster_model,
vectorizer_model=vectoriser_model,
min_topic_size= min_docs_slider,
nr_topics = max_topics_slider,
representation_model=representation_model,
verbose = True)
topics_text, probs = topic_model.fit_transform(docs, embeddings_out)
# Do this if you have pre-assigned topics
else:
zero_shot_topics_list = read_file(candidate_topics.name)
zero_shot_topics_list_lower = [x.lower() for x in zero_shot_topics_list]
print(zero_shot_topics_list_lower)
topic_model = BERTopic( embedding_model=embedding_model,
#hdbscan_model=cluster_model,
vectorizer_model=vectoriser_model,
min_topic_size = min_docs_slider,
nr_topics = max_topics_slider,
zeroshot_topic_list = zero_shot_topics_list_lower,
zeroshot_min_similarity = 0.7,
representation_model=representation_model,
verbose = True)
topics_text, probs = topic_model.fit_transform(docs, embeddings_out)
if not topics_text:
return "No topics found, original file returned", data_file_name
else:
topics_text_out = topics_text
topics_scores_out = probs
topic_det_output_name = "topic_details_" + today_rev + ".csv"
topic_dets = topic_model.get_topic_info()
topic_dets.to_csv(topic_det_output_name)
#print(topic_dets)
doc_det_output_name = "doc_details_" + today_rev + ".csv"
doc_dets = topic_model.get_document_info(docs)[["Document", "Topic", "Probability", "Name", "Representative_document"]]
doc_dets.to_csv(doc_det_output_name)
#print(doc_dets)
#print(topic_dets)
#topics_text_out_str = ', '.join(list(topic_dets["KeyBERT"]))
topics_text_out_str = str(topic_dets["KeyBERT"])
#topics_scores_out_str = str(doc_dets["Probability"][0])
output_text = "Topics: " + topics_text_out_str #+ "\n\nProbability scores: " + topics_scores_out_str
# Outputs
embedding_file_name = data_file_name_no_ext + '_' + 'embeddings.npz'
np.savez_compressed(embedding_file_name, embeddings_out)
topic_model_save_name = data_file_name_no_ext + "_topics_" + today_rev + ".pkl"
topic_model.save(topic_model_save_name, serialization='pickle', save_embedding_model=False, save_ctfidf=False)
# Visualise the topics:
topics_vis = topic_model.visualize_documents(label_col, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True)
return output_text, [doc_det_output_name, topic_det_output_name, embedding_file_name, topic_model_save_name], topics_vis
# ## Gradio app - extract topics
block = gr.Blocks(theme = gr.themes.Base())
with block:
data_state = gr.State(pd.DataFrame())
gr.Markdown(
"""
# Extract topics from text
Enter open text below to get topics. You can copy and paste text directly, or upload a file and specify the column that you want to topics.
""")
#with gr.Accordion("I will copy and paste my open text", open = False):
# in_text = gr.Textbox(label="Copy and paste your open text here", lines = 5)
with gr.Tab("Load files and find topics"):
with gr.Accordion("Load data file", open = True):
in_files = gr.File(label="Input text from file", file_count="multiple")
with gr.Row():
in_colnames = gr.Dropdown(choices=["Choose a column"], multiselect = True, label="Select column to find topics (first will be chosen if multiple selected).")
in_label = gr.Dropdown(choices=["Choose a column"], multiselect = True, label="Select column to for labelling documents in the output visualisation.")
with gr.Accordion("I have my own list of topics. File should have at least one column with a header and topic keywords in cells below. Topics will be taken from the first column of the file", open = False):
candidate_topics = gr.File(label="Input topics from file (csv)")
with gr.Row():
min_docs_slider = gr.Slider(minimum = 1, maximum = 1000, value = 15, step = 1, label = "Minimum number of documents needed to create topic")
max_topics_slider = gr.Slider(minimum = 2, maximum = 500, value = 3, step = 1, label = "Maximum number of topics")
with gr.Row():
topics_btn = gr.Button("Extract topics")
with gr.Row():
output_single_text = gr.Textbox(label="Output example (first example in dataset)")
output_file = gr.File(label="Output file")
plot = gr.Plot(label="Visualise your topics here:")
with gr.Tab("Load and data processing options"):
with gr.Accordion("Process data on load", open = True):
anonymise_drop = gr.Dropdown(value = "No", choices=["Yes", "No"], multiselect=False, label="Anonymise data on file load.")
return_intermediate_files = gr.Dropdown(label = "Return intermediate processing files from file preparation. Files can be loaded in to save processing time in future.", value="No", choices=["Yes", "No"])
embedding_super_compress = gr.Dropdown(label = "Round embeddings to three dp for smaller files with less accuracy.", value="No", choices=["Yes", "No"])
low_resource_mode_opt = gr.Dropdown(label = "Low resource mode (non-AI embeddings, no LLM-generated topic names).", value=low_resource_mode, choices=["Yes", "No"])
# Update column names dropdown when file uploaded
in_files.upload(fn=put_columns_in_df, inputs=[in_files], outputs=[in_colnames, in_label, data_state])
in_colnames.change(dummy_function, in_colnames, None)
topics_btn.click(fn=extract_topics, inputs=[data_state, in_files, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, in_label, anonymise_drop, return_intermediate_files, embedding_super_compress, low_resource_mode_opt], outputs=[output_single_text, output_file, plot], api_name="topics")
block.queue().launch(debug=True)#, server_name="0.0.0.0", ssl_verify=False, server_port=7860)
|