Spaces:
Running
Running
File size: 30,025 Bytes
5d87c3c b4510a6 9dbf344 aa3df37 be094ee 9dbf344 4cfed8e 9dbf344 ff32b4a 9dbf344 b4510a6 ff32b4a 9dbf344 b4510a6 9dbf344 b4510a6 9dbf344 b4510a6 4cfed8e 9dbf344 5d87c3c 4cfed8e 9dbf344 b4510a6 9dbf344 b4510a6 9dbf344 5d87c3c be094ee 9dbf344 5d87c3c b4510a6 9dbf344 b4510a6 ffe5eb2 b4510a6 ffe5eb2 b4510a6 9eeba1e aa3df37 ff32b4a 5d87c3c 9dbf344 b4510a6 9dbf344 ffe5eb2 e09dd3b 5d87c3c ff32b4a 9dbf344 b4510a6 e09dd3b 5d87c3c 9dbf344 4cfed8e be094ee 4cfed8e be094ee b4510a6 be094ee 4cfed8e e09dd3b aa3df37 4cfed8e 43ac0d8 4cfed8e ff32b4a 4cfed8e 43ac0d8 aa3df37 b4510a6 aa3df37 e09dd3b b4510a6 5d87c3c ffe5eb2 9dbf344 aa3df37 be094ee ffe5eb2 b4510a6 ffe5eb2 9dbf344 b4510a6 1f1a1c7 b4510a6 1f1a1c7 b4510a6 9dbf344 ff32b4a b4510a6 ff32b4a 4cfed8e 9dbf344 b4510a6 be094ee ffe5eb2 0fe5421 b4510a6 ffe5eb2 9dbf344 b4510a6 9dbf344 b4510a6 be094ee b4510a6 be094ee b4510a6 ffe5eb2 5d87c3c be094ee 5d87c3c be094ee 5d87c3c b4510a6 ffe5eb2 b4510a6 5d87c3c b4510a6 5d87c3c b4510a6 5d87c3c b4510a6 5d87c3c 9dbf344 ffe5eb2 5d87c3c b4510a6 5d87c3c b4510a6 ffe5eb2 9dbf344 5d87c3c 1f1a1c7 5d87c3c b4510a6 5d87c3c b4510a6 5d87c3c b4510a6 5d87c3c 9dbf344 5d87c3c b4510a6 5d87c3c b4510a6 5d87c3c b4510a6 9dbf344 4cfed8e 1f1a1c7 4cfed8e 5d87c3c b4510a6 4cfed8e 9dbf344 b4510a6 5d87c3c 4cfed8e 5d87c3c 4cfed8e b4510a6 4cfed8e 5d87c3c 4cfed8e b4510a6 9dbf344 5d87c3c 43ac0d8 b4510a6 1f1a1c7 5d87c3c e0f53cc 5d87c3c b4510a6 e0f53cc b4510a6 ffe5eb2 81f1b56 b4510a6 5d87c3c b4510a6 5d87c3c b4510a6 aa3df37 5d87c3c aa3df37 5d87c3c 4cfed8e aa3df37 5d87c3c aa3df37 b4510a6 9dbf344 5d87c3c b4510a6 5d87c3c b4510a6 5d87c3c 9dbf344 9eeba1e 5d87c3c b4510a6 9dbf344 ff32b4a be094ee ffe5eb2 9dbf344 ff32b4a 9dbf344 b4510a6 9dbf344 ff32b4a 0fe5421 9dbf344 fac3624 e09dd3b 9dbf344 5d87c3c 9dbf344 5d87c3c b4510a6 5d87c3c 731ed23 5d87c3c b4510a6 6622531 b4510a6 9dbf344 ff32b4a 4cfed8e b4510a6 4cfed8e aa3df37 b4510a6 81f1b56 9dbf344 b4510a6 9dbf344 b4510a6 5d87c3c b4510a6 5d87c3c b4510a6 5d87c3c b4510a6 5d87c3c 731ed23 9dbf344 5d87c3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
import os
# Dendrograms will not work with the latest version of scipy (1.12.0), so installing the version prior to be safe
os.system("pip install scipy==1.11.4")
import gradio as gr
from datetime import datetime
import pandas as pd
import numpy as np
import time
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import make_pipeline
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
import funcs.anonymiser as anon
from umap import UMAP
from torch import cuda, backends, version
# Default seed, can be changed in number selection on options page
random_seed = 42
# Check for torch cuda
# If you want to disable cuda for testing purposes
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "gpu"
print("Cuda version installed is: ", version.cuda)
low_resource_mode = "No"
#os.system("nvidia-smi")
else:
torch_device = "cpu"
low_resource_mode = "Yes"
print("Device used is: ", torch_device)
from bertopic import BERTopic
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
from funcs.helper_functions import dummy_function, initial_file_load, read_file, zip_folder, delete_files_in_folder, save_topic_outputs
#from funcs.representation_model import representation_model
from funcs.embeddings import make_or_load_embeddings
# Log terminal output: https://github.com/gradio-app/gradio/issues/2362
import sys
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
sys.stdout = Logger("output.log")
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
# Load embeddings
embeddings_name = "BAAI/bge-small-en-v1.5" #"jinaai/jina-embeddings-v2-base-en"
# Use of Jina deprecated - kept here for posterity
# Pinning a Jina revision for security purposes: https://www.baseten.co/blog/pinning-ml-model-revisions-for-compatibility-and-security/
# Save Jina model locally as described here: https://huggingface.co/jinaai/jina-embeddings-v2-base-en/discussions/29
# local_embeddings_location = "model/jina/"
#revision_choice = "b811f03af3d4d7ea72a7c25c802b21fc675a5d99"
#revision_choice = "69d43700292701b06c24f43b96560566a4e5ad1f"
# Model used for representing topics
hf_model_name = 'second-state/stablelm-2-zephyr-1.6b-GGUF' #'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF'
hf_model_file = 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf' # 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf'
def extract_topics(data, in_files, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, data_file_name_no_ext, custom_labels_df, anonymise_drop, return_intermediate_files, embeddings_super_compress, low_resource_mode, save_topic_model, embeddings_out, zero_shot_similarity, random_seed, calc_probs, progress=gr.Progress(track_tqdm=True)):
progress(0, desc= "Loading data")
if calc_probs == "No":
calc_probs = False
elif calc_probs == "Yes":
print("Calculating all probabilities.")
calc_probs == True
if not in_colnames:
error_message = "Please enter one column name to use to find topics."
print(error_message)
return error_message, None, embeddings_out, data_file_name_no_ext, None, None
all_tic = time.perf_counter()
output_list = []
file_list = [string.name for string in in_files]
in_colnames_list_first = in_colnames[0]
docs = list(data[in_colnames_list_first].str.lower())
if anonymise_drop == "Yes":
progress(0.1, desc= "Anonymising data")
anon_tic = time.perf_counter()
data_anon_col, anonymisation_success = anon.anonymise_script(data, in_colnames_list_first, anon_strat="replace")
data[in_colnames_list_first] = data_anon_col[in_colnames_list_first]
anonymise_data_name = data_file_name_no_ext + "_anonymised_" + today_rev + ".csv"
data.to_csv(anonymise_data_name)
output_list.append(anonymise_data_name)
print(anonymisation_success)
anon_toc = time.perf_counter()
time_out = f"Anonymising text took {anon_toc - anon_tic:0.1f} seconds"
# Check if embeddings are being loaded in
progress(0.2, desc= "Loading/creating embeddings")
print("Low resource mode: ", low_resource_mode)
if low_resource_mode == "No":
print("Using high resource BGE transformer model")
embedding_model = SentenceTransformer(embeddings_name)
# Use of Jina now superseded by BGE, keeping this code just in case I consider reverting one day
#try:
#embedding_model = AutoModel.from_pretrained(embeddings_name, revision = revision_choice, trust_remote_code=True,device_map="auto") # For Jina
#except:
# embedding_model = AutoModel.from_pretrained(embeddings_name)#, revision = revision_choice, trust_remote_code=True, device_map="auto", use_auth_token=os.environ["HF_TOKEN"])
#tokenizer = AutoTokenizer.from_pretrained(embeddings_name)
#embedding_model_pipe = pipeline("feature-extraction", model=embedding_model, tokenizer=tokenizer)
# UMAP model uses Bertopic defaults
umap_model = UMAP(n_neighbors=15, n_components=5, min_dist=0.0, metric='cosine', low_memory=False, random_state=random_seed)
elif low_resource_mode == "Yes":
print("Choosing low resource TF-IDF model.")
embedding_model_pipe = make_pipeline(
TfidfVectorizer(),
TruncatedSVD(100) # 100 # To be compatible with zero shot, this needs to be lower than number of suggested topics
)
embedding_model = embedding_model_pipe
umap_model = TruncatedSVD(n_components=5, random_state=random_seed)
embeddings_out = make_or_load_embeddings(docs, file_list, embeddings_out, embedding_model, embeddings_super_compress, low_resource_mode)
vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
# Representation model not currently used in this function
#print("Create Keybert-like topic representations by default")
#from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
#representation_model = create_representation_model("No", llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode)
progress(0.3, desc= "Embeddings loaded. Creating BERTopic model")
if not candidate_topics:
topic_model = BERTopic( embedding_model=embedding_model, #embedding_model_pipe, #for Jina
vectorizer_model=vectoriser_model,
umap_model=umap_model,
min_topic_size = min_docs_slider,
nr_topics = max_topics_slider,
calculate_probabilities=calc_probs,
#representation_model=representation_model,
verbose = True)
assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)
#print(assigned_topics)
# Replace original labels with Keybert labels
#if "KeyBERT" in topic_model.get_topic_info().columns:
# keybert_labels = [f"{i+1}: {', '.join(entry[:5])}" for i, entry in enumerate(topic_model.get_topics(full=True)["KeyBERT"].values())]
# topic_model.set_topic_labels(keybert_labels)
# Do this if you have pre-defined topics
else:
if low_resource_mode == "Yes":
error_message = "Zero shot topic modelling currently not compatible with low-resource embeddings. Please change this option to 'No' on the options tab and retry."
print(error_message)
return error_message, output_list, embeddings_out, data_file_name_no_ext, None, docs
zero_shot_topics = read_file(candidate_topics.name)
zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower())
topic_model = BERTopic( embedding_model=embedding_model, #embedding_model_pipe, # for Jina
vectorizer_model=vectoriser_model,
umap_model=umap_model,
min_topic_size = min_docs_slider,
nr_topics = max_topics_slider,
zeroshot_topic_list = zero_shot_topics_lower,
zeroshot_min_similarity = zero_shot_similarity, # 0.7
calculate_probabilities=calc_probs,
#representation_model=representation_model,
verbose = True)
assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)
# For some reason, zero topic modelling exports assigned topics as a np.array instead of a list. Converting it back here.
if isinstance(assigned_topics, np.ndarray):
assigned_topics = assigned_topics.tolist()
#print(assigned_topics.tolist())
# Zero shot modelling is a model merge, which wipes the c_tf_idf part of the resulting model completely. To get hierarchical modelling to work, we need to recreate this part of the model with the CountVectorizer options used to create the initial model. Since with zero shot, we are merging two models that have exactly the same set of documents, the vocubulary should be the same, and so recreating the cf_tf_idf component in this way shouldn't be a problem. Discussion here, and below based on Maarten's suggested code: https://github.com/MaartenGr/BERTopic/issues/1700
doc_dets = topic_model.get_document_info(docs)
documents_per_topic = doc_dets.groupby(['Topic'], as_index=False).agg({'Document': ' '.join})
# Assign CountVectorizer to merged model
topic_model.vectorizer_model = vectoriser_model
# Re-calculate c-TF-IDF
c_tf_idf, _ = topic_model._c_tf_idf(documents_per_topic)
topic_model.c_tf_idf_ = c_tf_idf
# Replace original labels with Keybert labels
#if "KeyBERT" in topic_model.get_topic_info().columns:
# print(topic_model.get_topics(full=True)["KeyBERT"].values())
# keybert_labels = [f"{i+1}: {', '.join(entry[:5])}" for i, entry in enumerate(topic_model.get_topics(full=True)["KeyBERT"].values())]
# topic_model.set_topic_labels(keybert_labels)
if not assigned_topics:
# Handle the empty array case
return "No topics found.", output_list, embeddings_out, data_file_name_no_ext, topic_model, docs
else:
print("Topic model created.")
if not custom_labels_df.empty:
#print(custom_labels_df.shape)
#topic_dets = topic_model.get_topic_info()
#print(topic_dets.shape)
topic_model.set_topic_labels(list(custom_labels_df.iloc[:,0]))
# Outputs
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
# If you want to save your embedding files
if return_intermediate_files == "Yes":
print("Saving embeddings to file")
if low_resource_mode == "Yes":
embeddings_file_name = data_file_name_no_ext + '_' + 'tfidf_embeddings.npz'
else:
if embeddings_super_compress == "No":
embeddings_file_name = data_file_name_no_ext + '_' + 'bge_embeddings.npz'
else:
embeddings_file_name = data_file_name_no_ext + '_' + 'bge_embeddings_compress.npz'
np.savez_compressed(embeddings_file_name, embeddings_out)
output_list.append(embeddings_file_name)
all_toc = time.perf_counter()
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds."
print(time_out)
return output_text, output_list, embeddings_out, data_file_name_no_ext, topic_model, docs
def reduce_outliers(topic_model, docs, embeddings_out, data_file_name_no_ext, save_topic_model, progress=gr.Progress(track_tqdm=True)):
progress(0, desc= "Preparing data")
output_list = []
all_tic = time.perf_counter()
assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)
if isinstance(assigned_topics, np.ndarray):
assigned_topics = assigned_topics.tolist()
#progress(0.2, desc= "Loading in representation model")
#print("Create LLM topic labels:", create_llm_topic_labels)
#from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
#representation_model = create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode)
# Reduce outliers if required, then update representation
progress(0.2, desc= "Reducing outliers")
print("Reducing outliers.")
# Calculate the c-TF-IDF representation for each outlier document and find the best matching c-TF-IDF topic representation using cosine similarity.
assigned_topics = topic_model.reduce_outliers(docs, assigned_topics, strategy="embeddings")
# Then, update the topics to the ones that considered the new data
print("Finished reducing outliers.")
progress(0.7, desc= "Replacing topic names with LLMs if necessary")
#print("Create LLM topic labels:", "No")
#vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
#representation_model = create_representation_model("No", llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode)
#topic_model.update_topics(docs, topics=assigned_topics, vectorizer_model=vectoriser_model, representation_model=representation_model)
topic_dets = topic_model.get_topic_info()
# Replace original labels with LLM labels
if "LLM" in topic_model.get_topic_info().columns:
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
topic_model.set_topic_labels(llm_labels)
else:
topic_model.set_topic_labels(list(topic_dets["Name"]))
# Outputs
progress(0.9, desc= "Saving to file")
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
all_toc = time.perf_counter()
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
print(time_out)
return output_text, output_list, topic_model
def represent_topics(topic_model, docs, embeddings_out, data_file_name_no_ext, low_resource_mode, save_topic_model, progress=gr.Progress(track_tqdm=True)):
#from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
output_list = []
all_tic = time.perf_counter()
vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)
topic_dets = topic_model.get_topic_info()
progress(0.1, desc= "Loading LLM model")
print("Create LLM topic labels:", "Yes")
representation_model = create_representation_model("Yes", llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode)
topic_model.update_topics(docs, topics=assigned_topics, vectorizer_model=vectoriser_model, representation_model=representation_model)
# Replace original labels with LLM labels
if "LLM" in topic_model.get_topic_info().columns:
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
topic_model.set_topic_labels(llm_labels)
label_list_file_name = data_file_name_no_ext + '_llm_topic_list_' + today_rev + '.csv'
llm_labels_df = pd.DataFrame(data={"Label":llm_labels})
llm_labels_df.to_csv(label_list_file_name, index=None)
#with open(label_list_file_name, 'w') as file:
# file.write(f"Label\n")
# for item in llm_labels:
# file.write(f"{item}\n")
output_list.append(label_list_file_name)
else:
topic_model.set_topic_labels(list(topic_dets["Name"]))
# Outputs
progress(0.8, desc= "Saving outputs")
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
all_toc = time.perf_counter()
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
print(time_out)
return output_text, output_list, topic_model
def visualise_topics(topic_model, data, data_file_name_no_ext, low_resource_mode, embeddings_out, in_label, in_colnames, sample_prop, visualisation_type_radio, random_seed, progress=gr.Progress()):
progress(0, desc= "Preparing data for visualisation")
output_list = []
vis_tic = time.perf_counter()
from funcs.bertopic_vis_documents import visualize_documents_custom, visualize_hierarchical_documents_custom, visualize_barchart_custom
if not visualisation_type_radio:
return "Please choose a visualisation type above.", output_list, None, None
# Get topic labels
if in_label:
in_label_list_first = in_label[0]
else:
return "Label column not found. Please enter this above.", output_list, None, None
# Get docs
if in_colnames:
in_colnames_list_first = in_colnames[0]
else:
return "Label column not found. Please enter this on the data load tab.", output_list, None, None
docs = list(data[in_colnames_list_first].str.lower())
# Make sure format of input series is good
data[in_label_list_first] = data[in_label_list_first].fillna('').astype(str)
label_list = list(data[in_label_list_first])
topic_dets = topic_model.get_topic_info()
# Replace original labels with LLM labels if they exist, or go with the 'Name' column
if "LLM" in topic_model.get_topic_info().columns:
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
topic_model.set_topic_labels(llm_labels)
else:
topic_model.set_topic_labels(list(topic_dets["Name"]))
# Pre-reduce embeddings for visualisation purposes
if low_resource_mode == "No":
reduced_embeddings = UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine', random_state=random_seed).fit_transform(embeddings_out)
else:
reduced_embeddings = TruncatedSVD(2, random_state=random_seed).fit_transform(embeddings_out)
progress(0.5, desc= "Creating visualisation (this can take a while)")
# Visualise the topics:
print("Creating visualisation")
# "Topic document graph", "Hierarchical view"
if visualisation_type_radio == "Topic document graph":
topics_vis = visualize_documents_custom(topic_model, docs, hover_labels = label_list, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True, sample = sample_prop, width= 1200, height = 750)
topics_vis_name = data_file_name_no_ext + '_' + 'vis_topic_docs_' + today_rev + '.html'
topics_vis.write_html(topics_vis_name)
output_list.append(topics_vis_name)
topics_vis_2 = visualize_barchart_custom(topic_model, top_n_topics = 12, custom_labels=True, width= 300, height = 250)
topics_vis_2_name = data_file_name_no_ext + '_' + 'vis_barchart_' + today_rev + '.html'
topics_vis_2.write_html(topics_vis_2_name)
output_list.append(topics_vis_2_name)
elif visualisation_type_radio == "Hierarchical view":
# Check that original topics are retained
#new_topic_dets = topic_model.get_topic_info()
#new_topic_dets.to_csv("new_topic_dets.csv")
#from funcs.bertopic_hierarchical_topics_mod import hierarchical_topics_mod
hierarchical_topics = topic_model.hierarchical_topics(docs)
# Save new hierarchical topic model to file
hierarchical_topics_name = data_file_name_no_ext + '_' + 'vis_hierarchy_topics_' + today_rev + '.csv'
hierarchical_topics.to_csv(hierarchical_topics_name)
output_list.append(hierarchical_topics_name)
#hierarchical_topics = hierarchical_topics_mod(topic_model, docs)
topics_vis = visualize_hierarchical_documents_custom(topic_model, docs, label_list, hierarchical_topics, reduced_embeddings=reduced_embeddings, sample = sample_prop, hide_document_hover= False, custom_labels=True, width= 1200, height = 750)
#topics_vis = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings, sample = sample_prop, hide_document_hover= False, custom_labels=True, width= 1200, height = 750)
topics_vis_2 = topic_model.visualize_hierarchy(hierarchical_topics=hierarchical_topics, width= 1200, height = 750)
topics_vis_name = data_file_name_no_ext + '_' + 'vis_hierarchy_topic_doc_' + today_rev + '.html'
topics_vis.write_html(topics_vis_name)
output_list.append(topics_vis_name)
topics_vis_2_name = data_file_name_no_ext + '_' + 'vis_hierarchy_' + today_rev + '.html'
topics_vis_2.write_html(topics_vis_2_name)
output_list.append(topics_vis_2_name)
all_toc = time.perf_counter()
time_out = f"Creating visualisation took {all_toc - vis_tic:0.1f} seconds"
print(time_out)
return time_out, output_list, topics_vis, topics_vis_2
def save_as_pytorch_model(topic_model, data_file_name_no_ext , progress=gr.Progress()):
if not topic_model:
return "No Pytorch model found.", None
progress(0, desc= "Saving topic model in Pytorch format")
output_list = []
topic_model_save_name_folder = "output_model/" + data_file_name_no_ext + "_topics_" + today_rev# + ".safetensors"
topic_model_save_name_zip = topic_model_save_name_folder + ".zip"
# Clear folder before replacing files
delete_files_in_folder(topic_model_save_name_folder)
topic_model.save(topic_model_save_name_folder, serialization='pytorch', save_embedding_model=True, save_ctfidf=False)
# Zip file example
zip_folder(topic_model_save_name_folder, topic_model_save_name_zip)
output_list.append(topic_model_save_name_zip)
return "Model saved in Pytorch format.", output_list
# Gradio app
block = gr.Blocks(theme = gr.themes.Base())
with block:
data_state = gr.State(pd.DataFrame())
embeddings_state = gr.State(np.array([]))
topic_model_state = gr.State()
docs_state = gr.State()
data_file_name_no_ext_state = gr.State()
label_list_state = gr.State(pd.DataFrame())
gr.Markdown(
"""
# Topic modeller
Generate topics from open text in tabular data. Upload a file (csv, xlsx, or parquet), then specify the open text column that you want to use to generate topics, and another for labels in the visualisation. If you have an embeddings .npz file of the text made using the 'BAAI/bge-small-en-v1.5' model, you can load this in at the same time to skip the first modelling step. If you have a pre-defined list of topics, you can upload this as a csv file under 'I have my own list of topics...'. Further configuration options are available under the 'Options' tab.
Suggested test dataset: https://huggingface.co/datasets/rag-datasets/mini_wikipedia/tree/main/data (passages.parquet)
""")
with gr.Tab("Load files and find topics"):
with gr.Accordion("Load data file", open = True):
in_files = gr.File(label="Input text from file", file_count="multiple")
with gr.Row():
in_colnames = gr.Dropdown(choices=["Choose a column"], multiselect = True, label="Select column to find topics (first will be chosen if multiple selected).")
with gr.Accordion("I have my own list of topics (zero shot topic modelling).", open = False):
candidate_topics = gr.File(label="Input topics from file (csv). File should have at least one column with a header and topic keywords in cells below. Topics will be taken from the first column of the file. Currently not compatible with low-resource embeddings.")
zero_shot_similarity = gr.Slider(minimum = 0.5, maximum = 1, value = 0.65, step = 0.001, label = "Minimum similarity value for document to be assigned to zero-shot topic.")
with gr.Row():
min_docs_slider = gr.Slider(minimum = 2, maximum = 1000, value = 15, step = 1, label = "Minimum number of similar documents needed to make a topic.")
max_topics_slider = gr.Slider(minimum = 2, maximum = 500, value = 10, step = 1, label = "Maximum number of topics")
with gr.Row():
topics_btn = gr.Button("Extract topics")
with gr.Row():
output_single_text = gr.Textbox(label="Output topics")
output_file = gr.File(label="Output file")
with gr.Accordion("Post processing options.", open = True):
with gr.Row():
reduce_outliers_btn = gr.Button("Reduce outliers")
represent_llm_btn = gr.Button("Generate topic labels with LLMs")
save_pytorch_btn = gr.Button("Save model in Pytorch format")
#logs = gr.Textbox(label="Processing logs.")
with gr.Tab("Visualise"):
with gr.Row():
in_label = gr.Dropdown(choices=["Choose a column"], multiselect = True, label="Select column for labelling documents in output visualisations.")
visualisation_type_radio = gr.Radio(label="Visualisation type", choices=["Topic document graph", "Hierarchical view"])
sample_slide = gr.Slider(minimum = 0.01, maximum = 1, value = 0.1, step = 0.01, label = "Proportion of data points to show on output visualisations.")
plot_btn = gr.Button("Visualise topic model")
with gr.Row():
vis_output_single_text = gr.Textbox(label="Visualisation output text")
out_plot_file = gr.File(label="Output plots to file", file_count="multiple")
plot = gr.Plot(label="Visualise your topics here.")
plot_2 = gr.Plot(label="Visualise your topics here.")
with gr.Tab("Options"):
with gr.Accordion("Data load and processing options", open = True):
with gr.Row():
anonymise_drop = gr.Dropdown(value = "No", choices=["Yes", "No"], multiselect=False, label="Anonymise data on file load. Names and other details are replaced with tags e.g. '<person>'.")
embedding_super_compress = gr.Dropdown(label = "Round embeddings to three dp for smaller files with less accuracy.", value="No", choices=["Yes", "No"])
seed_number = gr.Number(label="Random seed to use for dimensionality reduction.", minimum=0, step=1, value=42, precision=0)
calc_probs = gr.Dropdown(label="Calculate all topic probabilities (i.e. a separate document prob. value for each topic)", value="No", choices=["Yes", "No"])
with gr.Row():
low_resource_mode_opt = gr.Dropdown(label = "Use low resource embeddings and processing.", value="No", choices=["Yes", "No"])
return_intermediate_files = gr.Dropdown(label = "Return intermediate processing files from file preparation.", value="Yes", choices=["Yes", "No"])
save_topic_model = gr.Dropdown(label = "Save topic model to file.", value="Yes", choices=["Yes", "No"])
# Update column names dropdown when file uploaded
in_files.upload(fn=initial_file_load, inputs=[in_files], outputs=[in_colnames, in_label, data_state, output_single_text, topic_model_state, embeddings_state, data_file_name_no_ext_state, label_list_state])
in_colnames.change(dummy_function, in_colnames, None)
topics_btn.click(fn=extract_topics, inputs=[data_state, in_files, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, data_file_name_no_ext_state, label_list_state, anonymise_drop, return_intermediate_files, embedding_super_compress, low_resource_mode_opt, save_topic_model, embeddings_state, zero_shot_similarity, seed_number, calc_probs], outputs=[output_single_text, output_file, embeddings_state, data_file_name_no_ext_state, topic_model_state, docs_state], api_name="topics")
reduce_outliers_btn.click(fn=reduce_outliers, inputs=[topic_model_state, docs_state, embeddings_state, data_file_name_no_ext_state, save_topic_model], outputs=[output_single_text, output_file, topic_model_state], api_name="reduce_outliers")
represent_llm_btn.click(fn=represent_topics, inputs=[topic_model_state, docs_state, embeddings_state, data_file_name_no_ext_state, low_resource_mode_opt, save_topic_model], outputs=[output_single_text, output_file, topic_model_state], api_name="represent_llm")
save_pytorch_btn.click(fn=save_as_pytorch_model, inputs=[topic_model_state, data_file_name_no_ext_state], outputs=[output_single_text, output_file])
plot_btn.click(fn=visualise_topics, inputs=[topic_model_state, data_state, data_file_name_no_ext_state, low_resource_mode_opt, embeddings_state, in_label, in_colnames, sample_slide, visualisation_type_radio, seed_number], outputs=[vis_output_single_text, out_plot_file, plot, plot_2], api_name="plot")
#block.load(read_logs, None, logs, every=5)
block.queue().launch(debug=True)#, server_name="0.0.0.0", ssl_verify=False, server_port=7860)
|