Spaces:
Running
Running
Dockerfile now loads models to local folder. Can use custom output folder. requrirements for GPU-enabled summarisation now in separate file to hopefully avoid HF space issues.
3809dc8
import gradio as gr | |
from datetime import datetime | |
import pandas as pd | |
from transformers import pipeline, AutoTokenizer | |
import os | |
from typing import Type | |
import gradio as gr | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
PandasDataFrame = Type[pd.DataFrame] | |
import chatfuncs.chatfuncs as chatf | |
import chatfuncs.summarise_funcs as sumf | |
from chatfuncs.helper_functions import dummy_function, put_columns_in_df, output_folder, ensure_output_folder_exists | |
from chatfuncs.summarise_funcs import summarise_text | |
ensure_output_folder_exists(output_folder) | |
# Disable cuda devices if necessary | |
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
from torch import cuda, backends | |
# Check for torch cuda | |
print("Is CUDA enabled? ", cuda.is_available()) | |
print("Is a CUDA device available on this computer?", backends.cudnn.enabled) | |
if cuda.is_available(): | |
torch_device = "cuda" | |
os.system("nvidia-smi") | |
else: | |
torch_device = "cpu" | |
print("Device used is: ", torch_device) | |
def create_hf_model(model_name, local_model_dir="model/t5_long"): | |
# Construct the expected local model path | |
local_model_path = os.path.join(local_model_dir, model_name) | |
# Check if the model directory exists | |
if os.path.exists(local_model_path): | |
print(f"Model '{model_name}' found locally at: {local_model_path}") | |
# Load tokenizer and pipeline from local path | |
tokenizer = AutoTokenizer.from_pretrained(local_model_path, model_max_length=chatf.context_length) | |
summariser = pipeline("summarization", model=local_model_path, tokenizer=tokenizer) | |
else: | |
print(f"Downloading model '{model_name}' from Hugging Face Hub...") | |
# Download tokenizer and pipeline from Hugging Face Hub | |
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length=chatf.context_length) | |
summariser = pipeline("summarization", model=model_name, tokenizer=tokenizer) | |
# Save the model locally (optional, but recommended for future use) | |
#summariser.save_pretrained(local_model_path) | |
return summariser, tokenizer, model_name | |
def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None): | |
print("Loading model ", model_type) | |
# Default values inside the function | |
if gpu_config is None: | |
gpu_config = chatf.gpu_config | |
if cpu_config is None: | |
cpu_config = chatf.cpu_config | |
if torch_device is None: | |
torch_device = chatf.torch_device | |
if model_type == "Phi 3 128k (24k tokens max)": | |
if torch_device == "cuda": | |
gpu_config.update_gpu(gpu_layers) | |
print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.") | |
else: | |
gpu_config.update_gpu(gpu_layers) | |
cpu_config.update_gpu(gpu_layers) | |
print("Loading with", cpu_config.n_gpu_layers, "model layers sent to GPU.") | |
print(vars(gpu_config)) | |
print(vars(cpu_config)) | |
def get_model_path(): | |
repo_id = os.environ.get("REPO_ID", "QuantFactory/Phi-3-mini-128k-instruct-GGUF") | |
filename = os.environ.get("MODEL_FILE", "Phi-3-mini-128k-instruct.Q4_K_M.gguf") | |
model_dir = "model/phi" # Assuming this is your intended directory | |
# Construct the expected local path | |
local_path = os.path.join(model_dir, filename) | |
if os.path.exists(local_path): | |
print(f"Model already exists at: {local_path}") | |
return local_path | |
else: | |
print(f"Checking default Hugging Face folder. Downloading model from Hugging Face Hub if not found") | |
return hf_hub_download(repo_id=repo_id, filename=filename) | |
model_path = get_model_path() | |
try: | |
summariser = Llama(model_path=model_path, **vars(gpu_config)) | |
except Exception as e: | |
print("GPU load failed") | |
print(e) | |
summariser = Llama(model_path=model_path, **vars(cpu_config)) | |
tokenizer = [] | |
if model_type == "Flan T5 Large Stacked Samsum 1k": | |
# Huggingface chat model | |
hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024' | |
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint, local_model_dir="model/t5_stacked") | |
if model_type == "Long T5 Global Base 16k Book Summary": | |
# Huggingface chat model | |
hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary' | |
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint, local_model_dir="model/t5_long") | |
sumf.model = summariser | |
sumf.tokenizer = tokenizer | |
sumf.model_type = model_type | |
load_confirmation = "Finished loading model: " + model_type | |
print(load_confirmation) | |
return model_type, load_confirmation, model_type | |
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded | |
model_type = "Phi 3 128k (24k tokens max)" | |
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device) | |
model_type = "Flan T5 Large Stacked Samsum 1k" | |
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device) | |
model_type = "Long T5 Global Base 16k Book Summary" | |
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device) | |
today = datetime.now().strftime("%d%m%Y") | |
today_rev = datetime.now().strftime("%Y%m%d") | |
# ## Gradio app - summarise | |
block = gr.Blocks(theme = gr.themes.Base()) | |
with block: | |
data_state = gr.State(pd.DataFrame()) | |
model_type_state = gr.State(model_type) | |
gr.Markdown( | |
""" | |
# Text summariser | |
Enter open text below to get a summary. You can copy and paste text directly, or upload a file and specify the column that you want to summarise. The default small model will be able to summarise up to about 12,000 words, but the quality may not be great. The larger model around 800 words of better quality. Summarisation with Phi 3 128k works on up to around 20,000 words (suitable for a 12Gb graphics card without out of memory issues), and may give a higher quality summary, but will be slow, and it may not respect your desired maximum word count. | |
""") | |
with gr.Tab("Summariser"): | |
current_model = gr.Textbox(label="Current model", value=model_type, scale = 3) | |
with gr.Accordion("Summarise open text from a file", open = True): | |
in_text_df = gr.File(label="Input text from file", file_count='multiple') | |
in_colname = gr.Dropdown(label="Write the column name for the open text to summarise") | |
with gr.Accordion("Paste open text", open = False): | |
in_text = gr.Textbox(label="Copy and paste your open text here", lines = 5) | |
with gr.Row(): | |
summarise_btn = gr.Button("Summarise", variant="primary") | |
stop = gr.Button(value="Interrupt processing", variant="secondary", scale=0) | |
length_slider = gr.Slider(minimum = 30, maximum = 1000, value = 500, step = 10, label = "Maximum length of summary (in words)") | |
with gr.Row(): | |
output_single_text = gr.Textbox(label="Output example (first example in dataset)") | |
output_file = gr.File(label="Output file") | |
with gr.Tab("Advanced features"): | |
with gr.Row(): | |
model_choice = gr.Radio(label="Choose a summariser model", value="Long T5 Global Base 16k Book Summary", choices = ["Long T5 Global Base 16k Book Summary", "Flan T5 Large Stacked Samsum 1k", "Phi 3 128k (24k tokens max)"]) | |
change_model_button = gr.Button(value="Load model", scale=0) | |
with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False): | |
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True) | |
with gr.Accordion("LLM parameters"): | |
temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.", interactive=True) | |
load_text = gr.Text(label="Load status") | |
# Update dropdowns upon initial file load | |
in_text_df.upload(put_columns_in_df, inputs=[in_text_df, in_colname], outputs=[in_colname, data_state]) | |
change_model_button.click(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model]) | |
summarise_click = summarise_btn.click(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state], | |
outputs=[output_single_text, output_file], api_name="summarise") | |
# summarise_enter = summarise_btn.submit(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state], | |
# outputs=[output_single_text, output_file]) | |
#summarise_click = summarise_btn.click(chatf.llama_cpp_streaming, [chatbot, instruction_prompt_out, model_type_state, temp_slide], chatbot) | |
# Stop processing if it's taking too long | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[summarise_click]) | |
# Dummy function to allow dropdown modification to work correctly (strange thing needed for Gradio 3.50, will be deprecated upon upgrading Gradio version) | |
in_colname.change(dummy_function, in_colname, None) | |
block.queue().launch(show_error=True) | |
# def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None): | |
# print("Loading model ", model_type) | |
# # Default values inside the function | |
# if gpu_config is None: | |
# gpu_config = chatf.gpu_config | |
# if cpu_config is None: | |
# cpu_config = chatf.cpu_config | |
# if torch_device is None: | |
# torch_device = chatf.torch_device | |
# if model_type == "Phi 3 128k (24k tokens max)": | |
# hf_checkpoint = 'NousResearch/Nous-Capybara-7B-V1.9-GGUF' | |
# if torch_device == "cuda": | |
# gpu_config.update_gpu(gpu_layers) | |
# else: | |
# gpu_config.update_gpu(gpu_layers) | |
# cpu_config.update_gpu(gpu_layers) | |
# print("Loading with", cpu_config.gpu_layers, "model layers sent to GPU.") | |
# print(vars(gpu_config)) | |
# print(vars(cpu_config)) | |
# try: | |
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu()) | |
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu()) | |
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu()) | |
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/OpenHermes-2.5-Mistral-7B-16k-GGUF', model_type='mistral', model_file='openhermes-2.5-mistral-7b-16k.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu()) | |
# model = ctransformers.AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu()) | |
# tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9") | |
# summariser = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# except: | |
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(cpu_config)) #**asdict(CtransRunConfig_gpu()) | |
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu()) | |
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(cpu_config), hf=True) # **asdict(CtransRunConfig_cpu()) | |
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/OpenHermes-2.5-Mistral-7B-16k-GGUF', model_type='mistral', model_file='openhermes-2.5-mistral-7b-16k.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu()) | |
# model = ctransformers.AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu()) | |
# #tokenizer = ctransformers.AutoTokenizer.from_pretrained(model) | |
# tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9") | |
# summariser = pipeline("text-generation", model=model, tokenizer=tokenizer) # model | |
# #model = [] | |
# #tokenizer = [] | |
# #summariser = [] | |
# if model_type == "Flan T5 Large Stacked Samsum 1k": | |
# # Huggingface chat model | |
# hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'#'declare-lab/flan-alpaca-base' # # # | |
# summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint) | |
# if model_type == "Long T5 Global Base 16k Book Summary": | |
# # Huggingface chat model | |
# hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary' #'philschmid/flan-t5-small-stacked-samsum'#'declare-lab/flan-alpaca-base' # # # | |
# summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint) | |
# chatf.model = summariser | |
# chatf.tokenizer = tokenizer | |
# chatf.model_type = model_type | |
# load_confirmation = "Finished loading model: " + model_type | |
# print(load_confirmation) | |
# return model_type, load_confirmation, model_type |