seanpedrickcase's picture
Updated documentation with an advanced user guide detailing new features.
fcbaca7
import os
import socket
# By default TLDExtract will try to pull files from the internet. I have instead downloaded this file locally to avoid the requirement for an internet connection.
os.environ['TLDEXTRACT_CACHE'] = 'tld/.tld_set_snapshot'
import gradio as gr
import pandas as pd
from datetime import datetime
from gradio_image_annotation import image_annotator
from gradio_image_annotation.image_annotator import AnnotatedImageData
from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector, reset_review_vars, merge_csv_files
from tools.aws_functions import upload_file_to_s3, download_file_from_s3, RUN_AWS_FUNCTIONS, bucket_name
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names, CUSTOM_BOX_COLOUR
from tools.redaction_review import apply_redactions, modify_existing_page_redactions, decrease_page, increase_page, update_annotator, update_zoom, update_entities_df, df_select_callback, convert_df_to_xfdf, convert_xfdf_to_dataframe
from tools.data_anonymise import anonymise_data_files
from tools.auth import authenticate_user
from tools.load_spacy_model_custom_recognisers import custom_entities
from tools.custom_csvlogger import CSVLogger_custom
from tools.find_duplicate_pages import identify_similar_pages
today_rev = datetime.now().strftime("%Y%m%d")
add_folder_to_path("tesseract/")
add_folder_to_path("poppler/poppler-24.02.0/Library/bin/")
ensure_output_folder_exists()
chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER']
full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER', "CUSTOM_FUZZY"]
# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
chosen_comprehend_entities.extend(custom_entities)
full_comprehend_entity_list.extend(custom_entities)
# Entities for local PII redaction option
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", "CUSTOM"]
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS', 'CUSTOM', 'CUSTOM_FUZZY']
language = 'en'
host_name = socket.gethostname()
feedback_logs_folder = 'feedback/' + today_rev + '/' + host_name + '/'
access_logs_folder = 'logs/' + today_rev + '/' + host_name + '/'
usage_logs_folder = 'usage/' + today_rev + '/' + host_name + '/'
file_input_height = 200
if RUN_AWS_FUNCTIONS == "1":
default_ocr_val = textract_option
default_pii_detector = local_pii_detector
else:
default_ocr_val = text_ocr_option
default_pii_detector = local_pii_detector
# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base(), fill_width=True)
with app:
###
# STATE VARIABLES
###
pdf_doc_state = gr.State([])
all_image_annotations_state = gr.State([])
all_line_level_ocr_results_df_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="all_line_level_ocr_results_df", visible=False, type="pandas") #gr.State(pd.DataFrame())
all_decision_process_table_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="all_decision_process_table", visible=False, type="pandas") # gr.State(pd.DataFrame())
review_file_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="review_file_df", visible=False, type="pandas") #gr.State(pd.DataFrame())
session_hash_state = gr.State()
s3_output_folder_state = gr.State()
first_loop_state = gr.State(True)
second_loop_state = gr.State(False)
do_not_save_pdf_state = gr.State(False)
prepared_pdf_state = gr.Dropdown(label = "prepared_pdf_list", value="", allow_custom_value=True,visible=False) #gr.State([])
images_pdf_state = gr.Dropdown(label = "images_pdf_list", value="", allow_custom_value=True,visible=False) #gr.State([]) # List of pdf pages converted to PIL images
output_image_files_state = gr.Dropdown(label = "output_image_files_list", value="", allow_custom_value=True,visible=False) #gr.State([])
output_file_list_state = gr.Dropdown(label = "output_file_list", value="", allow_custom_value=True,visible=False) #gr.State([])
text_output_file_list_state = gr.Dropdown(label = "text_output_file_list", value="", allow_custom_value=True,visible=False) #gr.State([])
log_files_output_list_state = gr.Dropdown(label = "log_files_output_list", value="", allow_custom_value=True,visible=False) #gr.State([])
# Logging state
log_file_name = 'log.csv'
feedback_logs_state = gr.State(feedback_logs_folder + log_file_name)
feedback_s3_logs_loc_state = gr.State(feedback_logs_folder)
access_logs_state = gr.State(access_logs_folder + log_file_name)
access_s3_logs_loc_state = gr.State(access_logs_folder)
usage_logs_state = gr.State(usage_logs_folder + log_file_name)
usage_s3_logs_loc_state = gr.State(usage_logs_folder)
# Invisible text boxes to hold the session hash/username, Textract request metadata, data file names just for logging purposes.
session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)
doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
doc_file_name_textbox_list = gr.Dropdown(label = "doc_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
data_full_file_name_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
data_file_name_no_extension_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
data_file_name_with_extension_textbox = gr.Textbox(label = "data_file_name_with_extension_textbox", value="", visible=False)
data_file_name_textbox_list = gr.Dropdown(label = "data_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
estimated_time_taken_number = gr.Number(label = "estimated_time_taken_number", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) # Keeps track of the last page that the annotator was on
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
## Annotator zoom value
annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=80, precision=0, visible=False)
zoom_true_bool = gr.State(True)
zoom_false_bool = gr.State(False)
clear_all_page_redactions = gr.State(True)
prepare_for_review_bool = gr.Checkbox(value=True, visible=False)
## Settings page variables
default_allow_list_file_name = "default_allow_list.csv"
default_allow_list_loc = output_folder + "/" + default_allow_list_file_name
in_allow_list_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="in_allow_list_df", visible=False, type="pandas")
default_deny_list_file_name = "default_deny_list.csv"
default_deny_list_loc = output_folder + "/" + default_deny_list_file_name
in_deny_list_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="in_deny_list_df", visible=False, type="pandas")
in_deny_list_text_in = gr.Textbox(value="Deny list", visible=False)
fully_redacted_list_file_name = "default_fully_redacted_list.csv"
fully_redacted_list_loc = output_folder + "/" + fully_redacted_list_file_name
in_fully_redacted_list_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="in_full_redacted_list_df", visible=False, type="pandas")
in_fully_redacted_text_in = gr.Textbox(value="Fully redacted page list", visible=False)
# S3 settings for default allow list load
s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=bucket_name, visible=False)
s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=default_allow_list_file_name, visible=False)
default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=default_allow_list_loc, visible=False)
# Base dataframe for recognisers that is not modified subsequent to load
recogniser_entity_dataframe_base = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]}), col_count=2, type="pandas", visible=False)
# Duplicate page detection
in_duplicate_pages_text = gr.Textbox(label="in_duplicate_pages_text", visible=False)
duplicate_pages_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="in_deny_list_df", visible=False, type="pandas")
###
# UI DESIGN
###
gr.Markdown(
"""# Document redaction
Redact personally identifiable information (PII) from documents (pdf, images), open text, or tabular data (xlsx/csv/parquet). Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use the app. Below is a very brief overview.
To identify text in documents, the 'local' text/OCR image analysis uses spacy/tesseract, and works ok for documents with typed text. If available, choose 'AWS Textract service' to redact more complex elements e.g. signatures or handwriting. Then, choose a method for PII identification. 'Local' is quick and gives good results if you are primarily looking for a custom list of terms to redact (see Redaction settings). If available, AWS Comprehend gives better results at a small cost.
After redaction, review suggested redactions on the 'Review redactions' tab. The original pdf can be uploaded here alongside a '...redaction_file.csv' to continue a previous redaction/review task. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or custom terms to always include/ exclude from redaction.
NOTE: The app is not 100% accurate, and it will miss some personal information. It is essential that all outputs are reviewed **by a human** before using the final outputs.""")
###
# REDACTION PDF/IMAGES TABL
###
with gr.Tab("Redact PDFs/images"):
with gr.Accordion("Redact document", open = True):
in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "single", file_types=['.pdf', '.jpg', '.png', '.json'], height=file_input_height)
if RUN_AWS_FUNCTIONS == "1":
in_redaction_method = gr.Radio(label="Choose text extraction method. AWS Textract has a cost per page.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option])
pii_identification_method_drop = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost per 100 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector])
else:
in_redaction_method = gr.Radio(label="Choose text extraction method.", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option])
pii_identification_method_drop = gr.Radio(label = "Choose PII detection method.", value = default_pii_detector, choices=[local_pii_detector], visible=False)
gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses, or a custom list of terms), please go to the redaction settings tab.""")
document_redact_btn = gr.Button("Redact document", variant="primary")
current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)
with gr.Row():
output_summary = gr.Textbox(label="Output summary", scale=1)
output_file = gr.File(label="Output files", scale = 2, height=file_input_height)
latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)
with gr.Row():
convert_text_pdf_to_img_btn = gr.Button(value="Convert pdf to image-based pdf to apply redactions", variant="secondary", visible=False)
# Feedback elements are invisible until revealed by redaction action
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
###
# REVIEW REDACTIONS TAB
###
with gr.Tab("Review redactions", id="tab_object_annotation"):
with gr.Accordion(label = "Review redaction file", open=True):
output_review_files = gr.File(label="Review output files", file_count='multiple', height=file_input_height)
upload_previous_review_file_btn = gr.Button("Review previously created redaction file (upload original PDF and ...review_file.csv)", variant="primary")
with gr.Row():
annotation_last_page_button = gr.Button("Previous page", scale = 3)
annotate_current_page = gr.Number(value=1, label="Page (press enter to change)", precision=0, scale = 2)
annotate_max_pages = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1)
annotation_next_page_button = gr.Button("Next page", scale = 3)
with gr.Row():
annotate_zoom_in = gr.Button("Zoom in")
annotate_zoom_out = gr.Button("Zoom out")
with gr.Row():
annotation_button_apply = gr.Button("Apply revised redactions to pdf", variant="secondary")
with gr.Row():
clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page", visible=False)
with gr.Row():
with gr.Column(scale=1):
zoom_str = str(annotator_zoom_number) + '%'
annotator = image_annotator(
label="Modify redaction boxes",
label_list=["Redaction"],
label_colors=[(0, 0, 0)],
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=False
)
with gr.Row():
annotation_last_page_button_bottom = gr.Button("Previous page", scale = 3)
annotate_current_page_bottom = gr.Number(value=1, label="Page (press enter to change)", precision=0, interactive=True, scale = 2)
annotate_max_pages_bottom = gr.Number(value=1, label="Total pages", precision=0, interactive=False, scale = 1)
annotation_next_page_button_bottom = gr.Button("Next page", scale = 3)
#with gr.Column(scale=1):
with gr.Row():
recogniser_entity_dropdown = gr.Dropdown(label="Redaction category", value="ALL", allow_custom_value=True)
recogniser_entity_dataframe = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[]}), col_count=2, type="pandas", label="Search results. Click to go to page")
with gr.Accordion("Convert review files loaded above to Adobe format, or convert from Adobe format to review file", open = False):
convert_review_file_to_adobe_btn = gr.Button("Convert review file to Adobe comment format", variant="primary")
adobe_review_files_out = gr.File(label="Output Adobe comment files will appear here. If converting from .xfdf file to review_file.csv, upload the original pdf with the xfdf file here then click Convert below.", file_count='multiple', file_types=['.csv', '.xfdf', '.pdf'])
convert_adobe_to_review_file_btn = gr.Button("Convert Adobe .xfdf comment file to review_file.csv", variant="primary")
###
# TEXT / TABULAR DATA TAB
###
with gr.Tab(label="Open text or Excel/csv files"):
gr.Markdown(
"""
### Choose open text or a tabular data file (xlsx or csv) to redact.
"""
)
with gr.Accordion("Paste open text", open = False):
in_text = gr.Textbox(label="Enter open text", lines=10)
with gr.Accordion("Upload xlsx or csv files", open = True):
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'], height=file_input_height)
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
with gr.Row():
text_output_summary = gr.Textbox(label="Output result")
text_output_file = gr.File(label="Output files")
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)
# Feedback elements are invisible until revealed by redaction action
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
choices=["The results were good", "The results were not good"], visible=False, show_label=True)
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
###
# IDENTIFY DUPLICATE PAGES TAB
###
with gr.Tab(label="Identify duplicate pages"):
with gr.Accordion("Identify duplicate pages to redact", open = True):
in_duplicate_pages = gr.File(label="Upload multiple 'ocr_output.csv' data files from redaction jobs here to compare", file_count="multiple", height=file_input_height, file_types=['.csv'])
find_duplicate_pages_btn = gr.Button(value="Identify duplicate pages", variant="primary")
duplicate_pages_out =gr.File(label="Duplicate pages analysis output", file_count="multiple", height=file_input_height, file_types=['.csv'])
###
# SETTINGS TAB
###
with gr.Tab(label="Redaction settings"):
with gr.Accordion("Custom allow, deny, and full page redaction lists", open = True):
with gr.Row():
with gr.Column():
in_allow_list = gr.File(label="Import allow list file - csv table with one column of a different word/phrase on each row (case sensitive). Terms in this file will not be redacted.", file_count="multiple", height=file_input_height)
in_allow_list_text = gr.Textbox(label="Custom allow list load status")
with gr.Column():
in_deny_list = gr.File(label="Import custom deny list - csv table with one column of a different word/phrase on each row (case sensitive). Terms in this file will always be redacted.", file_count="multiple", height=file_input_height)
in_deny_list_text = gr.Textbox(label="Custom deny list load status")
with gr.Column():
in_fully_redacted_list = gr.File(label="Import fully redacted pages list - csv table with one column of page numbers on each row. Page numbers in this file will be fully redacted.", file_count="multiple", height=file_input_height)
in_fully_redacted_list_text = gr.Textbox(label="Fully redacted page list load status")
with gr.Accordion("Select entity types to redact", open = True):
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Local PII identification model (click empty space in box for full list)")
in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="AWS Comprehend PII identification model (click empty space in box for full list)")
with gr.Row():
max_fuzzy_spelling_mistakes_num = gr.Number(label="Maximum number of spelling mistakes allowed for fuzzy matching (CUSTOM_FUZZY entity).", value=1, minimum=0, maximum=9, precision=0)
match_fuzzy_whole_phrase_bool = gr.Checkbox(label="Should fuzzy search match on entire phrases in deny list (as opposed to each word individually)?", value=True)
with gr.Accordion("Redact only selected pages", open = False):
with gr.Row():
page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
with gr.Accordion("AWS Textract specific options", open = False):
handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract settings", choices=["Redact all identified handwriting", "Redact all identified signatures"], value=["Redact all identified handwriting", "Redact all identified signatures"])
#with gr.Row():
in_redact_language = gr.Dropdown(value = "en", choices = ["en"], label="Redaction language (only English currently supported)", multiselect=False, visible=False)
with gr.Accordion("Settings for open text or xlsx/csv files", open = False):
anon_strat = gr.Radio(choices=["replace with <REDACTED>", "replace with <ENTITY_NAME>", "redact", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with <REDACTED>")
log_files_output = gr.File(label="Log file output", interactive=False)
with gr.Accordion("Combine multiple review files", open = False):
multiple_review_files_in_out = gr.File(label="Output Adobe comment files will appear here. If converting from .xfdf file to review_file.csv, upload the original pdf with the xfdf file here then click Convert below.", file_count='multiple', file_types=['.csv'])
merge_multiple_review_files_btn = gr.Button("Merge multiple review files into one", variant="primary")
### UI INTERACTION ###
###
# PDF/IMAGE REDACTION
###
in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list])
document_redact_btn.click(fn = reset_state_vars, outputs=[pdf_doc_state, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(fn = prepare_image_or_pdf, inputs=[in_doc_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, first_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state], api_name="prepare_doc").\
then(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool],
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, output_review_files], api_name="redact_doc").\
then(fn=update_annotator, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base])
# If the app has completed a batch of pages, it will run this until the end of all pages in the document
current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, in_redaction_method, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, output_summary, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, estimated_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_state, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool],
outputs=[output_summary, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, estimated_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_state, all_decision_process_table_state, comprehend_query_number, output_review_files]).\
then(fn=update_annotator, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base])
# If a file has been completed, the function will continue onto the next document
latest_file_completed_text.change(fn=update_annotator, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
###
# REVIEW PDF REDACTIONS
###
# Upload previous files for modifying redactions
upload_previous_review_file_btn.click(fn=reset_review_vars, inputs=None, outputs=[recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list]).\
then(fn = prepare_image_or_pdf, inputs=[output_review_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state, prepare_for_review_bool], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base])
# Page controls at top
annotate_current_page.submit(
modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, do_not_save_pdf_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output])
annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\
then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, do_not_save_pdf_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output])
annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, do_not_save_pdf_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output])
# Zoom in and out on annotator
annotate_zoom_in.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_zoom, inputs=[annotator_zoom_number, annotate_current_page, zoom_true_bool], outputs=[annotator_zoom_number, annotate_current_page])
annotate_zoom_out.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_zoom, inputs=[annotator_zoom_number, annotate_current_page, zoom_false_bool], outputs=[annotator_zoom_number, annotate_current_page])
annotator_zoom_number.change(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base])
clear_all_redactions_on_page_btn.click(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base, clear_all_page_redactions], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base])
annotation_button_apply.click(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output], scroll_to_output=True)
# Page controls at bottom
annotate_current_page_bottom.submit(
modify_existing_page_redactions, inputs = [annotator, annotate_current_page_bottom, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, do_not_save_pdf_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output])
annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]).\
then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, do_not_save_pdf_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output])
annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]).\
then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, do_not_save_pdf_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output])
# Review table controls
recogniser_entity_dropdown.select(update_entities_df, inputs=[recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs=[recogniser_entity_dataframe])
recogniser_entity_dataframe.select(df_select_callback, inputs=[recogniser_entity_dataframe], outputs=[annotate_current_page]).\
then(modify_existing_page_redactions, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, recogniser_entity_dropdown, recogniser_entity_dataframe_base], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom, recogniser_entity_dropdown, recogniser_entity_dataframe_base]).\
then(update_annotator, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
then(apply_redactions, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, do_not_save_pdf_state], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output])
# Convert review file to xfdf Adobe format
convert_review_file_to_adobe_btn.click(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list]).\
then(fn = prepare_image_or_pdf, inputs=[output_review_files, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state, prepare_for_review_bool], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state]).\
then(convert_df_to_xfdf, inputs=[output_review_files, pdf_doc_state, images_pdf_state], outputs=[adobe_review_files_out])
# Convert xfdf Adobe file back to review_file.csv
convert_adobe_to_review_file_btn.click(fn=get_input_file_names, inputs=[adobe_review_files_out], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list]).\
then(fn = prepare_image_or_pdf, inputs=[adobe_review_files_out, in_redaction_method, in_allow_list, latest_file_completed_text, output_summary, second_loop_state, annotate_max_pages, current_loop_page_number, all_image_annotations_state, prepare_for_review_bool], outputs=[output_summary, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state]).\
then(fn=convert_xfdf_to_dataframe, inputs=[adobe_review_files_out, pdf_doc_state, images_pdf_state], outputs=[output_review_files], scroll_to_output=True)
###
# TABULAR DATA REDACTION
###
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
then(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_full_file_name_textbox, data_file_name_no_extension_textbox, data_file_name_with_extension_textbox, data_full_file_name_textbox, data_file_name_textbox_list])
tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data")
# If the output file count text box changes, keep going with redacting each data file until done
text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
then(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])
###
# IDENTIFY DUPLICATE PAGES
###
find_duplicate_pages_btn.click(fn=identify_similar_pages, inputs=[in_duplicate_pages], outputs=[duplicate_pages_df, duplicate_pages_out])
###
# SETTINGS PAGE INPUT / OUTPUT
###
# If a custom allow/deny/duplicate page list is uploaded
in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
in_deny_list.change(fn=custom_regex_load, inputs=[in_deny_list, in_deny_list_text_in], outputs=[in_deny_list_text, in_deny_list_state])
in_fully_redacted_list.change(fn=custom_regex_load, inputs=[in_fully_redacted_list, in_fully_redacted_text_in], outputs=[in_fully_redacted_list_text, in_fully_redacted_list_state])
# Merge multiple review csv files together
merge_multiple_review_files_btn.click(fn=merge_csv_files, inputs=multiple_review_files_in_out, outputs=multiple_review_files_in_out)
###
# APP LOAD AND LOGGING
###
# Get connection details on app load
app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])
# If running on AWS, load in the default allow list file from S3
# if RUN_AWS_FUNCTIONS == "1":
# print("default_allow_list_output_folder_location:", default_allow_list_loc)
# if not os.path.exists(default_allow_list_loc):
# app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
# then(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
# else:
# app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
# Log usernames and times of access to file (to know who is using the app when running on AWS)
access_callback = CSVLogger_custom(dataset_file_name=log_file_name)
access_callback.setup([session_hash_textbox], access_logs_folder)
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# User submitted feedback for pdf redactions
pdf_callback = CSVLogger_custom(dataset_file_name=log_file_name)
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], feedback_logs_folder)
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
# User submitted feedback for data redactions
data_callback = CSVLogger_custom(dataset_file_name=log_file_name)
data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], feedback_logs_folder)
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_full_file_name_textbox], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
# Log processing time/token usage when making a query
usage_callback = CSVLogger_custom(dataset_file_name=log_file_name)
usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], usage_logs_folder)
latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, estimated_time_taken_number, textract_metadata_textbox, pii_identification_method_drop, comprehend_query_number], None, preprocess=False).\
then(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# Get some environment variables and Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')
1
RUN_DIRECT_MODE = get_or_create_env_var('RUN_DIRECT_MODE', '0')
print(f'The value of RUN_DIRECT_MODE is {RUN_DIRECT_MODE}')
MAX_QUEUE_SIZE = int(get_or_create_env_var('MAX_QUEUE_SIZE', '5'))
print(f'The value of RUN_DIRECT_MODE is {MAX_QUEUE_SIZE}')
MAX_FILE_SIZE = get_or_create_env_var('MAX_FILE_SIZE', '250mb')
print(f'The value of MAX_FILE_SIZE is {MAX_FILE_SIZE}')
GRADIO_SERVER_PORT = int(get_or_create_env_var('GRADIO_SERVER_PORT', '7860'))
print(f'The value of GRADIO_SERVER_PORT is {GRADIO_SERVER_PORT}')
ROOT_PATH = get_or_create_env_var('ROOT_PATH', '')
print(f'The value of ROOT_PATH is {ROOT_PATH}')
if __name__ == "__main__":
if RUN_DIRECT_MODE == "0":
if os.environ['COGNITO_AUTH'] == "1":
app.queue(max_size=MAX_QUEUE_SIZE).launch(show_error=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
else:
app.queue(max_size=MAX_QUEUE_SIZE).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
else:
from tools.cli_redact import main
main(first_loop_state, latest_file_completed=0, output_summary="", output_file_list=None,
log_files_list=None, estimated_time=0, textract_metadata="", comprehend_query_num=0,
current_loop_page=0, page_break=False, pdf_doc_state = [], all_image_annotations = [], all_line_level_ocr_results = pd.DataFrame(), all_decision_process_table = pd.DataFrame(),chosen_comprehend_entities = chosen_comprehend_entities, chosen_redact_entities = chosen_redact_entities, handwrite_signature_checkbox = ["Redact all identified handwriting", "Redact all identified signatures"])
# AWS options - placeholder for possibility of storing data on s3 and retrieving it in app
# with gr.Tab(label="Advanced options"):
# with gr.Accordion(label = "AWS data access", open = True):
# aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
# with gr.Row():
# in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
# load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
# aws_log_box = gr.Textbox(label="AWS data load status")
# ### Loading AWS data ###
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_doc_files, aws_log_box])