|
import boto3 |
|
from PIL import Image |
|
import io |
|
import json |
|
import pikepdf |
|
|
|
from pdf2image import convert_from_bytes |
|
from tools.custom_image_analyser_engine import OCRResult, CustomImageRecognizerResult |
|
|
|
def extract_textract_metadata(response): |
|
"""Extracts metadata from an AWS Textract response.""" |
|
|
|
print("Document metadata:", response['DocumentMetadata']) |
|
|
|
request_id = response['ResponseMetadata']['RequestId'] |
|
pages = response['DocumentMetadata']['Pages'] |
|
|
|
|
|
return str({ |
|
'RequestId': request_id, |
|
'Pages': pages |
|
|
|
|
|
}) |
|
|
|
def analyse_page_with_textract(pdf_page_bytes, json_file_path): |
|
''' |
|
Analyse page with AWS Textract |
|
''' |
|
try: |
|
client = boto3.client('textract') |
|
except: |
|
print("Cannot connect to AWS Textract") |
|
return "", "", "" |
|
|
|
print("Analysing page with AWS Textract") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"]) |
|
|
|
text_blocks = response['Blocks'] |
|
request_metadata = extract_textract_metadata(response) |
|
|
|
|
|
with open(json_file_path, 'w') as json_file: |
|
json.dump(response, json_file, indent=4) |
|
|
|
print("Response has been written to output:", json_file_path) |
|
|
|
return text_blocks, request_metadata |
|
|
|
|
|
def convert_pike_pdf_page_to_bytes(pdf, page_num): |
|
|
|
new_pdf = pikepdf.Pdf.new() |
|
|
|
|
|
page_num = 0 |
|
|
|
|
|
new_pdf.pages.append(pdf.pages[page_num]) |
|
|
|
|
|
buffer = io.BytesIO() |
|
new_pdf.save(buffer) |
|
|
|
|
|
pdf_bytes = buffer.getvalue() |
|
|
|
|
|
buffer.close() |
|
|
|
|
|
|
|
|
|
return pdf_bytes |
|
|
|
|
|
def json_to_ocrresult(json_data, page_width, page_height): |
|
''' |
|
Convert the json response from textract to the OCRResult format used elsewhere in the code. Looks for lines, words, and signatures. Handwriting and signatures are set aside especially for later in case the user wants to override the default behaviour and redact all handwriting/signatures. |
|
''' |
|
all_ocr_results = [] |
|
signature_or_handwriting_recogniser_results = [] |
|
signature_recogniser_results = [] |
|
handwriting_recogniser_results = [] |
|
signatures = [] |
|
handwriting = [] |
|
ocr_results_with_children = {} |
|
|
|
i = 1 |
|
|
|
for text_block in json_data: |
|
|
|
is_signature = False |
|
is_handwriting = False |
|
|
|
|
|
|
|
if (text_block['BlockType'] == 'LINE') | (text_block['BlockType'] == 'SIGNATURE'): |
|
|
|
|
|
line_bbox = text_block["Geometry"]["BoundingBox"] |
|
line_left = int(line_bbox["Left"] * page_width) |
|
line_top = int(line_bbox["Top"] * page_height) |
|
line_right = int((line_bbox["Left"] + line_bbox["Width"]) * page_width) |
|
line_bottom = int((line_bbox["Top"] + line_bbox["Height"]) * page_height) |
|
|
|
width_abs = int(line_bbox["Width"] * page_width) |
|
height_abs = int(line_bbox["Height"] * page_height) |
|
|
|
if text_block['BlockType'] == 'LINE': |
|
|
|
|
|
line_text = text_block.get('Text', '') |
|
|
|
words = [] |
|
if 'Relationships' in text_block: |
|
for relationship in text_block['Relationships']: |
|
if relationship['Type'] == 'CHILD': |
|
for child_id in relationship['Ids']: |
|
child_block = next((block for block in json_data if block['Id'] == child_id), None) |
|
if child_block and child_block['BlockType'] == 'WORD': |
|
word_text = child_block.get('Text', '') |
|
word_bbox = child_block["Geometry"]["BoundingBox"] |
|
confidence = child_block.get('Confidence','') |
|
word_left = int(word_bbox["Left"] * page_width) |
|
word_top = int(word_bbox["Top"] * page_height) |
|
word_right = int((word_bbox["Left"] + word_bbox["Width"]) * page_width) |
|
word_bottom = int((word_bbox["Top"] + word_bbox["Height"]) * page_height) |
|
|
|
|
|
word_width = word_bbox["Width"] |
|
word_height = word_bbox["Height"] |
|
|
|
|
|
word_width_abs = int(word_width * page_width) |
|
word_height_abs = int(word_height * page_height) |
|
|
|
words.append({ |
|
'text': word_text, |
|
'bounding_box': (word_left, word_top, word_right, word_bottom) |
|
}) |
|
|
|
text_type = child_block.get("TextType", '') |
|
|
|
if text_type == "HANDWRITING": |
|
is_handwriting = True |
|
entity_name = "HANDWRITING" |
|
word_end = len(entity_name) |
|
|
|
recogniser_result = CustomImageRecognizerResult(entity_type=entity_name, text= word_text, score= confidence, start=0, end=word_end, left=word_left, top=word_top, width=word_width_abs, height=word_height_abs) |
|
|
|
handwriting.append(recogniser_result) |
|
|
|
print("Handwriting found:", handwriting[-1]) |
|
|
|
|
|
|
|
elif (text_block['BlockType'] == 'SIGNATURE'): |
|
line_text = "SIGNATURE" |
|
|
|
is_signature = True |
|
entity_name = "SIGNATURE" |
|
confidence = text_block['Confidence'] |
|
word_end = len(entity_name) |
|
|
|
recogniser_result = CustomImageRecognizerResult(entity_type=entity_name, text= line_text, score= confidence, start=0, end=word_end, left=line_left, top=line_top, width=width_abs, height=height_abs) |
|
|
|
signatures.append(recogniser_result) |
|
print("Signature found:", signatures[-1]) |
|
|
|
words = [] |
|
words.append({ |
|
'text': line_text, |
|
'bounding_box': (line_left, line_top, line_right, line_bottom) |
|
}) |
|
|
|
ocr_results_with_children["text_line_" + str(i)] = { |
|
"line": i, |
|
'text': line_text, |
|
'bounding_box': (line_left, line_top, line_right, line_bottom), |
|
'words': words |
|
} |
|
|
|
|
|
ocr_result = OCRResult(line_text, line_left, line_top, width_abs, height_abs) |
|
all_ocr_results.append(ocr_result) |
|
|
|
is_signature_or_handwriting = is_signature | is_handwriting |
|
|
|
|
|
if is_signature_or_handwriting: |
|
signature_or_handwriting_recogniser_results.append(recogniser_result) |
|
|
|
if is_signature: signature_recogniser_results.append(recogniser_result) |
|
if is_handwriting: handwriting_recogniser_results.append(recogniser_result) |
|
|
|
i += 1 |
|
|
|
return all_ocr_results, signature_or_handwriting_recogniser_results, signature_recogniser_results, handwriting_recogniser_results, ocr_results_with_children |