File size: 102,759 Bytes
e9c4101
 
 
 
 
5b4b5fb
a770956
eea5c07
 
5b4b5fb
a680619
ebf9010
641ff3e
e9c4101
8652429
641ff3e
84c83c0
8652429
339a165
ebf9010
1d772de
8652429
 
 
34addbf
f0f9378
e2aae24
8652429
1d772de
e3365ed
e2aae24
f0f9378
 
 
34addbf
eea5c07
e3365ed
eea5c07
 
9504619
eea5c07
 
a03496e
 
 
 
 
8652429
 
34addbf
8652429
 
7aa4d5f
8652429
 
 
34addbf
8652429
 
34addbf
8652429
 
 
 
 
 
 
 
eea5c07
 
 
 
 
f0f9378
eea5c07
 
1d772de
 
eea5c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f9378
8235bbb
68a91f4
eea5c07
8652429
eea5c07
 
 
 
 
 
f0f9378
 
eea5c07
 
1d772de
 
eea5c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f9378
8235bbb
68a91f4
eea5c07
 
 
8652429
eea5c07
8652429
 
 
1d772de
 
 
 
 
 
 
 
 
f0f9378
8652429
 
542c252
8652429
eea5c07
8652429
eea5c07
 
 
 
 
 
 
8652429
 
 
 
 
 
eea5c07
 
 
 
 
 
 
8652429
eea5c07
 
2e71433
8652429
2e71433
eea5c07
 
 
 
 
 
8652429
eea5c07
34addbf
 
8235bbb
01c88c0
eea5c07
 
 
 
 
 
 
0f18146
8235bbb
eea5c07
 
e5dfae7
 
 
 
6ea0852
e5dfae7
a770956
6ea0852
 
84c83c0
eea5c07
e2aae24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a91f4
 
 
 
 
e2aae24
01c88c0
eea5c07
e5dfae7
 
 
 
 
eea5c07
 
 
 
 
a770956
e5dfae7
eea5c07
84c83c0
eea5c07
 
 
 
7810536
 
 
eea5c07
 
8c33828
 
7810536
 
e2aae24
7810536
 
 
eea5c07
8235bbb
7810536
e2aae24
5b4b5fb
8652429
 
 
e2aae24
7810536
8652429
339a165
a770956
f0f9378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8235bbb
e2aae24
 
1d772de
 
 
eea5c07
 
 
 
 
 
e2aae24
eea5c07
a770956
eea5c07
 
 
8235bbb
eea5c07
 
 
 
8235bbb
f0f9378
 
 
 
 
 
e2aae24
f0f9378
 
 
 
 
 
8235bbb
e2aae24
1d772de
 
 
eea5c07
 
 
 
8235bbb
eea5c07
 
 
 
 
 
 
 
04d80a1
eea5c07
6ea0852
 
339a165
ec98119
 
339a165
 
 
eea5c07
7810536
 
f0f9378
a770956
 
e9c4101
84c83c0
eea5c07
a770956
7810536
eea5c07
 
f0f9378
6ea0852
e2aae24
 
a770956
 
 
e2aae24
 
a770956
 
1d772de
a770956
 
1d772de
 
a03496e
1d772de
a770956
 
 
 
1d772de
 
a770956
 
e2aae24
eea5c07
 
 
 
 
f0f9378
 
 
 
eea5c07
 
f0f9378
 
 
 
2e71433
 
 
 
34addbf
0f18146
8652429
6ea0852
8235bbb
6ea0852
8652429
0f18146
6ea0852
 
8652429
 
 
 
 
eea5c07
 
04d80a1
eea5c07
 
 
 
 
6ea0852
8235bbb
ebf9010
a03496e
ebf9010
ec98119
ebf9010
ec98119
 
 
ebf9010
ec98119
 
 
 
 
 
ebf9010
ec98119
 
ebf9010
ec98119
 
 
 
a03496e
 
 
 
ec98119
ebf9010
ec98119
ebf9010
ec98119
 
 
 
 
 
 
ebf9010
a03496e
ebf9010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03496e
 
 
 
ebf9010
 
 
 
 
 
 
 
 
 
 
 
 
a03496e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf9010
a03496e
ebf9010
 
 
 
 
 
 
 
 
 
6ea0852
ebf9010
a03496e
 
 
 
 
 
 
 
 
ebf9010
a03496e
 
 
 
 
ebf9010
a03496e
 
 
 
 
ec98119
a03496e
ec98119
ebf9010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03496e
339a165
15026f7
 
 
 
339a165
23f8ca3
 
 
ebf9010
 
 
 
 
 
 
 
 
 
 
 
a03496e
 
ebf9010
a03496e
ebf9010
 
339a165
ebf9010
15026f7
ebf9010
 
 
23f8ca3
 
 
 
339a165
a03496e
 
 
 
 
ebf9010
 
23f8ca3
 
 
 
339a165
ebf9010
 
 
 
 
 
 
 
 
a03496e
 
 
 
339a165
ebf9010
15026f7
ebf9010
a03496e
 
 
 
 
23f8ca3
 
 
15026f7
ebf9010
339a165
ebf9010
339a165
ebf9010
ec98119
 
a03496e
 
ec98119
 
 
 
 
 
 
ebf9010
 
 
 
 
a03496e
 
 
 
339a165
 
 
 
ebf9010
 
a770956
339a165
a770956
 
23f8ca3
1d772de
a770956
339a165
ebf9010
 
 
 
 
a770956
 
 
339a165
 
 
ebf9010
339a165
8652429
a770956
84c83c0
a770956
 
e9c4101
 
 
a770956
 
 
 
ec98119
 
a770956
ec98119
 
a770956
ec98119
8652429
 
 
 
 
 
a770956
8652429
 
 
a770956
8652429
 
 
 
a748df6
8652429
 
 
a748df6
8652429
 
 
 
 
 
 
 
a770956
8652429
ebf9010
8652429
 
 
 
 
 
 
 
a770956
8652429
 
a770956
 
8652429
 
 
 
 
 
e9c4101
 
8652429
e9c4101
 
 
 
 
 
a770956
 
ebf9010
e9c4101
 
 
 
a770956
6ea0852
ebf9010
e9c4101
 
 
a770956
e9c4101
eea5c07
 
a770956
 
 
 
 
 
 
 
f0f9378
 
 
 
 
 
 
 
 
e2aae24
f0f9378
 
 
 
 
 
 
 
 
8235bbb
e3365ed
 
 
 
f0f9378
a770956
8235bbb
f0f9378
eea5c07
641ff3e
eea5c07
 
 
 
 
 
f0f9378
eea5c07
 
 
 
e2aae24
eea5c07
 
 
f0f9378
 
 
 
 
 
8235bbb
e2aae24
 
e3365ed
 
eea5c07
a770956
8235bbb
eea5c07
 
f0f9378
641ff3e
e9c4101
e3365ed
8235bbb
641ff3e
e3365ed
1d772de
 
e3365ed
 
1d772de
e3365ed
 
1d772de
 
 
 
 
 
 
e3365ed
 
 
 
e2aae24
 
 
a770956
e2aae24
 
 
 
a770956
eea5c07
 
339a165
ebf9010
2807627
 
 
ebf9010
641ff3e
ebf9010
bc4bdbd
641ff3e
bc4bdbd
 
 
641ff3e
eea5c07
 
12224f5
e9c4101
542c252
eea5c07
e2aae24
 
bc4bdbd
f0c28d7
 
 
 
 
a770956
f0c28d7
 
 
 
 
 
a770956
f0c28d7
 
 
 
 
 
 
 
 
 
 
eea5c07
 
 
 
 
 
 
e9c4101
8652429
 
eea5c07
ebf9010
eea5c07
f0c28d7
eea5c07
5b4b5fb
bc4bdbd
5b4b5fb
 
bc4bdbd
e3365ed
bc4bdbd
 
eea5c07
5b4b5fb
ebf9010
eea5c07
bc4bdbd
eea5c07
 
 
 
bc4bdbd
6ea0852
 
bc4bdbd
6ea0852
8235bbb
bc4bdbd
 
e9c4101
e2aae24
6ea0852
84c83c0
e9c4101
6ea0852
84c83c0
8652429
6ea0852
e9c4101
e2aae24
6ea0852
e9c4101
 
 
 
f0c28d7
 
9504619
a770956
8652429
eea5c07
f0c28d7
eea5c07
e9c4101
f0c28d7
 
eea5c07
f0c28d7
 
 
eea5c07
f0c28d7
 
 
eea5c07
f0c28d7
 
 
 
 
 
 
 
 
 
 
a770956
f0c28d7
eea5c07
f0c28d7
eea5c07
 
f0c28d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a770956
f0c28d7
 
 
 
e9c4101
eea5c07
8652429
e9c4101
ebf9010
f0f9378
8235bbb
ebf9010
 
f0f9378
e2aae24
 
ebf9010
 
 
f0f9378
 
 
c71d0c1
f0f9378
ebf9010
 
f0f9378
eea5c07
e2aae24
 
8652429
 
84c83c0
8652429
 
12224f5
e9c4101
84c83c0
eea5c07
e9c4101
339a165
 
 
ebf9010
 
339a165
ebf9010
 
339a165
 
 
 
12224f5
ebf9010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339a165
1d772de
339a165
1d772de
 
 
 
 
 
 
12224f5
ebf9010
 
a03496e
 
 
 
 
 
ebf9010
 
 
a03496e
 
 
 
 
 
84c83c0
ebf9010
84c83c0
 
 
 
 
 
 
 
 
 
 
 
 
eea5c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ff822
a03496e
59ff822
 
 
 
 
 
 
eea5c07
f0c28d7
 
 
 
 
eea5c07
 
a770956
eea5c07
339a165
 
ebf9010
641ff3e
59ff822
a03496e
59ff822
 
 
 
 
 
 
6ea0852
eea5c07
5b4b5fb
eea5c07
 
 
 
 
6ea0852
f0c28d7
 
 
 
 
a770956
f0c28d7
 
 
 
 
 
eea5c07
a770956
ebf9010
 
 
 
 
339a165
 
641ff3e
93ac94f
 
339a165
 
 
 
 
 
eea5c07
339a165
84c83c0
 
 
 
339a165
 
 
 
 
84c83c0
 
eea5c07
84c83c0
 
 
 
 
 
 
 
339a165
 
84c83c0
 
 
eea5c07
84c83c0
 
 
 
339a165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c83c0
 
 
eea5c07
 
 
 
 
 
 
 
 
 
 
84c83c0
 
 
 
 
 
 
 
 
eea5c07
 
84c83c0
 
 
 
 
 
 
 
 
 
 
339a165
eea5c07
 
 
 
 
 
 
339a165
eea5c07
 
339a165
 
84c83c0
a770956
e9c4101
8652429
e9c4101
ebf9010
a770956
 
ebf9010
a748df6
 
ebf9010
a770956
a748df6
84c83c0
a748df6
 
 
 
 
 
a770956
 
84c83c0
a770956
 
 
a748df6
 
 
 
8652429
 
 
a748df6
84c83c0
e9c4101
a770956
a748df6
a770956
 
 
a748df6
84c83c0
a748df6
a770956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf9010
a770956
eea5c07
a770956
84c83c0
a770956
 
 
 
 
 
 
 
ebf9010
a748df6
a770956
 
 
 
 
 
 
 
 
a748df6
84c83c0
93ac94f
a770956
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf9010
93ac94f
ebf9010
93ac94f
 
ebf9010
93ac94f
ebf9010
a03496e
 
 
 
 
 
 
 
 
 
 
ebf9010
a03496e
ebf9010
 
 
93ac94f
339a165
93ac94f
 
 
a03496e
 
ebf9010
 
93ac94f
 
 
 
 
 
 
 
 
ebf9010
93ac94f
 
 
 
 
a03496e
 
93ac94f
eea5c07
 
 
 
 
f0f9378
eea5c07
 
 
e2aae24
eea5c07
 
 
 
 
 
f0f9378
8235bbb
e2aae24
e3365ed
 
eea5c07
f0f9378
eea5c07
 
f0f9378
641ff3e
eea5c07
93ac94f
eea5c07
 
 
 
 
f0f9378
eea5c07
 
 
 
 
 
 
 
 
 
f0f9378
e2aae24
e3365ed
 
 
eea5c07
8235bbb
eea5c07
 
 
e2aae24
 
 
 
e3365ed
 
1d772de
 
e3365ed
 
1d772de
e3365ed
e2aae24
1d772de
 
 
 
 
 
 
eea5c07
12224f5
339a165
ebf9010
 
 
bc4bdbd
 
 
 
ebf9010
 
bc4bdbd
ebf9010
eea5c07
 
 
 
 
 
5b4b5fb
 
eea5c07
bc4bdbd
eea5c07
 
ebf9010
eea5c07
 
 
 
 
 
 
 
 
 
ebf9010
 
 
 
a03496e
 
 
 
ebf9010
 
 
 
 
 
a03496e
ebf9010
 
 
e2aae24
eea5c07
ebf9010
 
 
eea5c07
ebf9010
eea5c07
 
ebf9010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542c252
 
 
 
f0f9378
542c252
 
f0f9378
542c252
1d772de
59ff822
 
542c252
 
 
 
 
 
 
 
 
 
59ff822
a03496e
542c252
ec98119
 
 
 
59ff822
ec98119
 
 
 
 
 
 
 
 
 
 
542c252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf9010
542c252
 
 
 
 
eea5c07
 
 
ebf9010
eea5c07
 
 
ebf9010
5b4b5fb
ebf9010
59ff822
a03496e
59ff822
a03496e
59ff822
 
 
a03496e
 
 
 
 
 
 
e9c4101
ebf9010
a03496e
e9c4101
a03496e
59ff822
eea5c07
1d772de
 
 
 
 
 
a03496e
 
 
93ac94f
eea5c07
f0c28d7
 
ebf9010
 
 
eea5c07
12224f5
ebf9010
eea5c07
a03496e
339a165
ebf9010
 
eea5c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ff822
 
 
 
 
 
 
 
339a165
eea5c07
5b4b5fb
8235bbb
eea5c07
 
59ff822
 
 
 
 
 
 
 
eea5c07
 
 
 
 
 
 
 
8235bbb
eea5c07
339a165
8235bbb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
import time
import re
import json
import io
import os
import boto3
import copy

from tqdm import tqdm
from PIL import Image, ImageChops, ImageFile, ImageDraw
ImageFile.LOAD_TRUNCATED_IMAGES = True
from typing import List, Dict, Tuple
import pandas as pd

#from presidio_image_redactor.entities import ImageRecognizerResult
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine, LTTextLineHorizontal, LTAnno
from pikepdf import Pdf, Dictionary, Name
import pymupdf
from pymupdf import Rect
from fitz import Page
import gradio as gr
from gradio import Progress
from collections import defaultdict  # For efficient grouping

from presidio_analyzer import RecognizerResult
from tools.aws_functions import RUN_AWS_FUNCTIONS
from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult, combine_ocr_results, CustomImageRecognizerResult
from tools.file_conversion import process_file, image_dpi, convert_review_json_to_pandas_df, redact_whole_pymupdf_page, redact_single_box, convert_pymupdf_to_image_coords
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_entities, custom_recogniser, custom_word_list_recogniser
from tools.helper_functions import get_file_path_end, output_folder, clean_unicode_text, get_or_create_env_var, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector
from tools.file_conversion import process_file, is_pdf, is_pdf_or_image
from tools.aws_textract import analyse_page_with_textract, json_to_ocrresult
from tools.presidio_analyzer_custom import recognizer_result_from_dict

# Number of pages to loop through before breaking. Currently set very high, as functions are breaking on time metrics (e.g. every 105 seconds), rather than on number of pages redacted.
page_break_value = get_or_create_env_var('page_break_value', '50000')
print(f'The value of page_break_value is {page_break_value}')

max_time_value = get_or_create_env_var('max_time_value', '999999')
print(f'The value of max_time_value is {max_time_value}')

def bounding_boxes_overlap(box1, box2):
    """Check if two bounding boxes overlap."""
    return (box1[0] < box2[2] and box2[0] < box1[2] and
            box1[1] < box2[3] and box2[1] < box1[3])

def sum_numbers_before_seconds(string:str):
    """Extracts numbers that precede the word 'seconds' from a string and adds them up.



    Args:

        string: The input string.



    Returns:

        The sum of all numbers before 'seconds' in the string.

    """

    # Extract numbers before 'seconds' using regular expression
    numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string)

    # Extract the numbers from the matches
    numbers = [float(num.split()[0]) for num in numbers]

    # Sum up the extracted numbers
    sum_of_numbers = round(sum(numbers),1)

    return sum_of_numbers

def choose_and_run_redactor(file_paths:List[str],

 prepared_pdf_file_paths:List[str],

 prepared_pdf_image_paths:List[str],

 language:str,

 chosen_redact_entities:List[str],

 chosen_redact_comprehend_entities:List[str],

 in_redact_method:str,

 in_allow_list:List[List[str]]=None,

 custom_recogniser_word_list:List[str]=None, 

 redact_whole_page_list:List[str]=None,

 latest_file_completed:int=0,

 out_message:list=[],

 out_file_paths:list=[],

 log_files_output_paths:list=[],

 first_loop_state:bool=False,

 page_min:int=0,

 page_max:int=999,

 estimated_time_taken_state:float=0.0,

 handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"],

 all_request_metadata_str:str = "",

 annotations_all_pages:dict={},

 all_line_level_ocr_results_df=[],

 all_decision_process_table=[],

 pymupdf_doc=[],

 current_loop_page:int=0,

 page_break_return:bool=False,

 pii_identification_method:str="Local",

 comprehend_query_number:int=0,

 output_folder:str=output_folder,

 progress=gr.Progress(track_tqdm=True)):
    '''

    This function orchestrates the redaction process based on the specified method and parameters. It takes the following inputs:



    - file_paths (List[str]): A list of paths to the files to be redacted.

    - prepared_pdf_file_paths (List[str]): A list of paths to the PDF files prepared for redaction.

    - prepared_pdf_image_paths (List[str]): A list of paths to the PDF files converted to images for redaction.

    - language (str): The language of the text in the files.

    - chosen_redact_entities (List[str]): A list of entity types to redact from the files using the local model (spacy) with Microsoft Presidio.

    - chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service

    - in_redact_method (str): The method to use for redaction.

    - in_allow_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.

    - custom_recogniser_word_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.

    - redact_whole_page_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.

    - latest_file_completed (int, optional): The index of the last completed file. Defaults to 0.

    - out_message (list, optional): A list to store output messages. Defaults to an empty list.

    - out_file_paths (list, optional): A list to store paths to the output files. Defaults to an empty list.

    - log_files_output_paths (list, optional): A list to store paths to the log files. Defaults to an empty list.

    - first_loop_state (bool, optional): A flag indicating if this is the first iteration. Defaults to False.

    - page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.

    - page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.

    - estimated_time_taken_state (float, optional): The estimated time taken for the redaction process. Defaults to 0.0.

    - handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Redact all identified handwriting", "Redact all identified signatures"].

    - all_request_metadata_str (str, optional): A string containing all request metadata. Defaults to an empty string.

    - annotations_all_pages (dict, optional): A dictionary containing all image annotations. Defaults to an empty dictionary.

    - all_line_level_ocr_results_df (optional): A DataFrame containing all line-level OCR results. Defaults to an empty DataFrame.

    - all_decision_process_table (optional): A DataFrame containing all decision process tables. Defaults to an empty DataFrame.

    - pymupdf_doc (optional): A list containing the PDF document object. Defaults to an empty list.

    - current_loop_page (int, optional): The current page being processed in the loop. Defaults to 0.

    - page_break_return (bool, optional): A flag indicating if the function should return after a page break. Defaults to False.

    - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).

    - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.

    - output_folder (str, optional): Output folder for results.

    - progress (gr.Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.



    The function returns a redacted document along with processing logs.

    '''
    combined_out_message = ""
    tic = time.perf_counter()
    all_request_metadata = all_request_metadata_str.split('\n') if all_request_metadata_str else []

    if isinstance(custom_recogniser_word_list, pd.DataFrame):
        custom_recogniser_word_list = custom_recogniser_word_list.iloc[:,0].tolist()

        # Sort the strings in order from the longest string to the shortest
        custom_recogniser_word_list = sorted(custom_recogniser_word_list, key=len, reverse=True)

    if isinstance(redact_whole_page_list, pd.DataFrame):
        redact_whole_page_list = redact_whole_page_list.iloc[:,0].tolist()


    # If this is the first time around, set variables to 0/blank
    if first_loop_state==True:
        #print("First_loop_state is True")
        latest_file_completed = 0
        current_loop_page = 0
        out_file_paths = []
        estimate_total_processing_time = 0
        estimated_time_taken_state = 0

    # If not the first time around, and the current page loop has been set to a huge number (been through all pages), reset current page to 0
    elif (first_loop_state == False) & (current_loop_page == 999):
        current_loop_page = 0


    if not out_file_paths:
        out_file_paths = []

    latest_file_completed = int(latest_file_completed)

    number_of_pages = len(prepared_pdf_image_paths)

    if isinstance(file_paths,str):
        number_of_files = 1
    else:
        number_of_files = len(file_paths)

    # If we have already redacted the last file, return the input out_message and file list to the relevant components
    if latest_file_completed >= number_of_files:

        print("Completed last file")
        # Set to a very high number so as not to mix up with subsequent file processing by the user
        # latest_file_completed = 99
        current_loop_page = 0

        if isinstance(out_message, list):
            combined_out_message = '\n'.join(out_message)
        else:
            combined_out_message = out_message
        
        estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message)
        print("Estimated total processing time:", str(estimate_total_processing_time))

        return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
    
    # If we have reached the last page, return message
    if current_loop_page >= number_of_pages:
        print("current_loop_page:", current_loop_page, "is equal to or greater than number of pages in document:", number_of_pages)

        # Set to a very high number so as not to mix up with subsequent file processing by the user
        current_loop_page = 999
        combined_out_message = out_message

        return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = False, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number

    # Create allow list
    # If string, assume file path
    if isinstance(in_allow_list, str):
        in_allow_list = pd.read_csv(in_allow_list)

    if not in_allow_list.empty:
        in_allow_list_flat = in_allow_list.iloc[:,0].tolist()
        #print("In allow list:", in_allow_list_flat)
    else:
        in_allow_list_flat = []


    # Try to connect to AWS services only if RUN_AWS_FUNCTIONS environmental variable is 1
    if pii_identification_method == "AWS Comprehend":
        print("Trying to connect to AWS Comprehend service")
        if RUN_AWS_FUNCTIONS == "1":
            comprehend_client = boto3.client('comprehend')
        else:
            comprehend_client = ""
            out_message = "Cannot connect to AWS Comprehend service. Please choose another PII identification method."
            print(out_message)
            return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
    else:
        comprehend_client = ""
        
    if in_redact_method == textract_option:
        print("Trying to connect to AWS Comprehend service")
        if RUN_AWS_FUNCTIONS == "1":
            textract_client = boto3.client('textract')
        else:
            textract_client = ""
            out_message = "Cannot connect to AWS Textract. Please choose another text extraction method."
            print(out_message)
            return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
    else:
        textract_client = ""

    # Check if output_folder exists, create it if it doesn't
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)


    progress(0.5, desc="Redacting file")
    
    if isinstance(file_paths, str):
        file_paths_list = [os.path.abspath(file_paths)]
        file_paths_loop = file_paths_list
    elif isinstance(file_paths, dict):
        file_paths = file_paths["name"]
        file_paths_list = [os.path.abspath(file_paths)]
        file_paths_loop = file_paths_list
    else:
        file_paths_list = file_paths
        file_paths_loop = [file_paths_list[int(latest_file_completed)]]    

    # print("file_paths_list in choose_redactor function:", file_paths_list)


    for file in file_paths_loop:
        if isinstance(file, str):
            file_path = file
        else:
            file_path = file.name    

        if file_path:
            file_path_without_ext = get_file_path_end(file_path)
            print("Redacting file:", file_path_without_ext)

            is_a_pdf = is_pdf(file_path) == True
            if is_a_pdf == False:
                # If user has not submitted a pdf, assume it's an image
                print("File is not a pdf, assuming that image analysis needs to be used.")
                in_redact_method = tesseract_ocr_option
        else:
            out_message = "No file selected"
            print(out_message)

            return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number

        if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option:

            #Analyse and redact image-based pdf or image
            if is_pdf_or_image(file_path) == False:
                out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
                return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number

            print("Redacting file " + file_path_without_ext + " as an image-based file")

            pymupdf_doc,all_decision_process_table,log_files_output_paths,new_request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number = redact_image_pdf(file_path,
             prepared_pdf_image_paths,
             language,
             chosen_redact_entities,
             chosen_redact_comprehend_entities,
             in_allow_list_flat,
             is_a_pdf,
             page_min,
             page_max,
             in_redact_method,
             handwrite_signature_checkbox,
             "",
             current_loop_page,
             page_break_return,
             prepared_pdf_image_paths,
             annotations_all_pages,
             all_line_level_ocr_results_df,
             all_decision_process_table,
             pymupdf_doc,
             pii_identification_method,
             comprehend_query_number,
             comprehend_client,
             textract_client,
             custom_recogniser_word_list,
             redact_whole_page_list)

            # Save Textract request metadata (if exists)
            if new_request_metadata:
                print("Request metadata:", new_request_metadata)
                all_request_metadata.append(new_request_metadata)              

        elif in_redact_method == text_ocr_option:

            #log_files_output_paths = []
            
            if is_pdf(file_path) == False:
                out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'."
                return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
            
            # Analyse text-based pdf
            print('Redacting file as text-based PDF')
            
            pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number = redact_text_pdf(file_path,
            prepared_pdf_image_paths,language,
            chosen_redact_entities,
            chosen_redact_comprehend_entities,
            in_allow_list_flat,
            page_min,
            page_max,
            text_ocr_option,
            current_loop_page,
            page_break_return,
            annotations_all_pages,
            all_line_level_ocr_results_df,
            all_decision_process_table,
            pymupdf_doc,
            pii_identification_method,
            comprehend_query_number,
            comprehend_client,
            custom_recogniser_word_list,
            redact_whole_page_list)

        else:
            out_message = "No redaction method selected"
            print(out_message)
            return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
        
        # If at last page, save to file
        if current_loop_page >= number_of_pages:

            print("Current page loop:", current_loop_page, "is greater or equal to number of pages:", number_of_pages)
            latest_file_completed += 1
            current_loop_page = 999

            if latest_file_completed != len(file_paths_list):
                print("Completed file number:", str(latest_file_completed), "there are more files to do")                    

            # Save file
            if is_pdf(file_path) == False:
                out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_pdf.pdf"
                pymupdf_doc[0].save(out_image_file_path, "PDF" ,resolution=image_dpi, save_all=False)#, append_images=pymupdf_doc[:1])
            
            else:
                out_image_file_path = output_folder + file_path_without_ext + "_redacted.pdf"
                pymupdf_doc.save(out_image_file_path)

            out_file_paths.append(out_image_file_path)

            #if log_files_output_paths:
            #    log_files_output_paths.extend(log_files_output_paths)

            logs_output_file_name = out_image_file_path + "_decision_process_output.csv"
            all_decision_process_table.to_csv(logs_output_file_name, index = None, encoding="utf-8")
            log_files_output_paths.append(logs_output_file_name)

            all_text_output_file_name = out_image_file_path + "_ocr_output.csv"
            all_line_level_ocr_results_df.to_csv(all_text_output_file_name, index = None, encoding="utf-8")
            out_file_paths.append(all_text_output_file_name)

            # Save the gradio_annotation_boxes to a JSON file
            try:
                print("Saving annotations to JSON")

                out_annotation_file_path = out_image_file_path + '_review_file.json'
                with open(out_annotation_file_path, 'w') as f:
                    json.dump(annotations_all_pages, f)
                log_files_output_paths.append(out_annotation_file_path)

                #print("Saving annotations to CSV")

                # Convert json to csv and also save this
                #print("annotations_all_pages:", annotations_all_pages)

                review_df = convert_review_json_to_pandas_df(annotations_all_pages, all_decision_process_table)

                out_review_file_file_path = out_image_file_path + '_review_file.csv'
                review_df.to_csv(out_review_file_file_path, index=None)
                out_file_paths.append(out_review_file_file_path)

                print("Saved review file to csv")

            except Exception as e:
                print("Could not save annotations to json file:", e)

            # Make a combined message for the file                
            if isinstance(out_message, list):
                combined_out_message = '\n'.join(out_message)  # Ensure out_message is a list of strings
            else: combined_out_message = out_message

            toc = time.perf_counter()
            time_taken = toc - tic
            estimated_time_taken_state = estimated_time_taken_state + time_taken

            out_time_message = f" Redacted in {estimated_time_taken_state:0.1f} seconds."
            combined_out_message = combined_out_message + " " + out_time_message  # Ensure this is a single string

            estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message)
            print("Estimated total processing time:", str(estimate_total_processing_time))

        else:
            toc = time.perf_counter()
            time_taken = toc - tic
            estimated_time_taken_state = estimated_time_taken_state + time_taken


   # If textract requests made, write to logging file
    if all_request_metadata:
        all_request_metadata_str = '\n'.join(all_request_metadata).strip()

        all_request_metadata_file_path = output_folder + file_path_without_ext + "_textract_request_metadata.txt"   

        with open(all_request_metadata_file_path, "w") as f:
            f.write(all_request_metadata_str)

        # Add the request metadata to the log outputs if not there already
        if all_request_metadata_file_path not in log_files_output_paths:
            log_files_output_paths.append(all_request_metadata_file_path)

    if combined_out_message: out_message = combined_out_message
    
    #print("\nout_message at choose_and_run_redactor end is:", out_message)

    # Ensure no duplicated output files
    log_files_output_paths = list(set(log_files_output_paths))
    out_file_paths = list(set(out_file_paths))


    return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number

def convert_pikepdf_coords_to_pymupdf(pymupdf_page, pikepdf_bbox, type="pikepdf_annot"):
    '''

    Convert annotations from pikepdf to pymupdf format, handling the mediabox larger than rect.

    '''
    # Use cropbox if available, otherwise use mediabox
    reference_box = pymupdf_page.rect
    mediabox = pymupdf_page.mediabox

    reference_box_height = reference_box.height
    reference_box_width = reference_box.width
    
    # Convert PyMuPDF coordinates back to PDF coordinates (bottom-left origin)
    media_height = mediabox.height
    media_width = mediabox.width

    media_reference_y_diff = media_height - reference_box_height
    media_reference_x_diff = media_width - reference_box_width

    y_diff_ratio = media_reference_y_diff / reference_box_height
    x_diff_ratio = media_reference_x_diff / reference_box_width
    
    # Extract the annotation rectangle field
    if type=="pikepdf_annot":
        rect_field = pikepdf_bbox["/Rect"]
    else:
        rect_field = pikepdf_bbox
    rect_coordinates = [float(coord) for coord in rect_field]  # Convert to floats

    # Unpack coordinates
    x1, y1, x2, y2 = rect_coordinates
    
    new_x1 = x1 - (media_reference_x_diff * x_diff_ratio)
    new_y1 = media_height - y2 - (media_reference_y_diff * y_diff_ratio)
    new_x2 = x2 - (media_reference_x_diff * x_diff_ratio)
    new_y2 = media_height - y1 - (media_reference_y_diff * y_diff_ratio)
    
    return new_x1, new_y1, new_x2, new_y2

def convert_pikepdf_to_image_coords(pymupdf_page, annot, image:Image, type="pikepdf_annot"):
    '''

    Convert annotations from pikepdf coordinates to image coordinates.

    '''

    # Get the dimensions of the page in points with pymupdf
    rect_height = pymupdf_page.rect.height
    rect_width = pymupdf_page.rect.width 

    # Get the dimensions of the image
    image_page_width, image_page_height = image.size

    # Calculate scaling factors between pymupdf and PIL image
    scale_width = image_page_width / rect_width
    scale_height = image_page_height / rect_height

    # Extract the /Rect field
    if type=="pikepdf_annot":
        rect_field = annot["/Rect"]
    else:
        rect_field = annot

    # Convert the extracted /Rect field to a list of floats
    rect_coordinates = [float(coord) for coord in rect_field]

    # Convert the Y-coordinates (flip using the image height)
    x1, y1, x2, y2 = rect_coordinates
    x1_image = x1 * scale_width
    new_y1_image = image_page_height - (y2 * scale_height)  # Flip Y0 (since it starts from bottom)
    x2_image = x2 * scale_width
    new_y2_image = image_page_height - (y1 * scale_height)  # Flip Y1

    return x1_image, new_y1_image, x2_image, new_y2_image

def convert_pikepdf_decision_output_to_image_coords(pymupdf_page, pikepdf_decision_ouput_data:List, image):
    if isinstance(image, str):
        image_path = image
        image = Image.open(image_path)

    # Loop through each item in the data
    for item in pikepdf_decision_ouput_data:
        # Extract the bounding box
        bounding_box = item['boundingBox']
        
        # Create a pikepdf_bbox dictionary to match the expected input
        pikepdf_bbox = {"/Rect": bounding_box}
        
        # Call the conversion function
        new_x1, new_y1, new_x2, new_y2 = convert_pikepdf_to_image_coords(pymupdf_page, pikepdf_bbox, image, type="pikepdf_annot")
        
        # Update the original object with the new bounding box values
        item['boundingBox'] = [new_x1, new_y1, new_x2, new_y2]

    return pikepdf_decision_ouput_data

def convert_image_coords_to_pymupdf(pymupdf_page, annot, image:Image, type="image_recognizer"):
    '''

    Converts an image with redaction coordinates from a CustomImageRecognizerResult or pikepdf object with image coordinates to pymupdf coordinates.

    '''

    rect_height = pymupdf_page.rect.height
    rect_width = pymupdf_page.rect.width 

    image_page_width, image_page_height = image.size

    # Calculate scaling factors between PIL image and pymupdf
    scale_width = rect_width / image_page_width
    scale_height = rect_height / image_page_height

    # Calculate scaled coordinates
    if type == "image_recognizer":
        x1 = (annot.left * scale_width)# + page_x_adjust
        new_y1 = (annot.top * scale_height)# - page_y_adjust  # Flip Y0 (since it starts from bottom)
        x2 = ((annot.left + annot.width) * scale_width)# + page_x_adjust  # Calculate x1
        new_y2 = ((annot.top + annot.height) * scale_height)# - page_y_adjust  # Calculate y1 correctly
    # Else assume it is a pikepdf derived object
    else:
        rect_field = annot["/Rect"]
        rect_coordinates = [float(coord) for coord in rect_field]  # Convert to floats

        # Unpack coordinates
        x1, y1, x2, y2 = rect_coordinates

        #print("scale_width:", scale_width)
        #print("scale_height:", scale_height)

        x1 = (x1* scale_width)# + page_x_adjust
        new_y1 = ((y2 + (y1 - y2))* scale_height)# - page_y_adjust  # Calculate y1 correctly        
        x2 = ((x1 + (x2 - x1)) * scale_width)# + page_x_adjust  # Calculate x1
        new_y2 = (y2 * scale_height)# - page_y_adjust  # Flip Y0 (since it starts from bottom)
        

    return x1, new_y1, x2, new_y2

def convert_gradio_annotation_coords_to_pymupdf(pymupdf_page:Page, annot:dict, image:Image):
    '''

    Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates.

    '''

    rect_height = pymupdf_page.rect.height
    rect_width = pymupdf_page.rect.width 

    image_page_width, image_page_height = image.size

    # Calculate scaling factors between PIL image and pymupdf
    scale_width = rect_width / image_page_width
    scale_height = rect_height / image_page_height

    # Calculate scaled coordinates
    x1 = (annot["xmin"] * scale_width)# + page_x_adjust
    new_y1 = (annot["ymin"] * scale_height)# - page_y_adjust  # Flip Y0 (since it starts from bottom)
    x2 = ((annot["xmax"]) * scale_width)# + page_x_adjust  # Calculate x1
    new_y2 = ((annot["ymax"]) * scale_height)# - page_y_adjust  # Calculate y1 correctly

    return x1, new_y1, x2, new_y2

def move_page_info(file_path: str) -> str:
    # Split the string at '.png'
    base, extension = file_path.rsplit('.pdf', 1)
    
    # Extract the page info
    page_info = base.split('page ')[1].split(' of')[0]  # Get the page number
    new_base = base.replace(f'page {page_info} of ', '')  # Remove the page info from the original position
    
    # Construct the new file path
    new_file_path = f"{new_base}_page_{page_info}.png"
    
    return new_file_path

def redact_page_with_pymupdf(page:Page, page_annotations:dict, image=None, custom_colours:bool=False, redact_whole_page:bool=False, convert_coords:bool=True):

    mediabox_height = page.mediabox[3] - page.mediabox[1]
    mediabox_width = page.mediabox[2] - page.mediabox[0]
    rect_height = page.rect.height
    rect_width = page.rect.width    

    pymupdf_x1 = None
    pymupdf_x2 = None

    out_annotation_boxes = {}
    all_image_annotation_boxes = []
    image_path = ""

    if isinstance(image, Image.Image):
        image_path = move_page_info(str(page))
        image.save(image_path)
    elif isinstance(image, str):
        image_path = image
        image = Image.open(image_path)

    # Check if this is an object used in the Gradio Annotation component
    if isinstance (page_annotations, dict):
        page_annotations = page_annotations["boxes"]

    for annot in page_annotations:
        # Check if an Image recogniser result, or a Gradio annotation object
        if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict):

            img_annotation_box = {}

            # Should already be in correct format if img_annotator_box is an input
            if isinstance(annot, dict):
                img_annotation_box = annot
                pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_gradio_annotation_coords_to_pymupdf(page, annot, image)

                x1 = pymupdf_x1
                x2 = pymupdf_x2

                # if hasattr(annot, 'text') and annot.text:
                #     img_annotation_box["text"] = annot.text
                # else:
                #     img_annotation_box["text"] = ""

            # Else should be CustomImageRecognizerResult
            else:
                pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image)

                x1 = pymupdf_x1
                x2 = pymupdf_x2

                img_annotation_box["xmin"] = annot.left
                img_annotation_box["ymin"] = annot.top 
                img_annotation_box["xmax"] = annot.left + annot.width
                img_annotation_box["ymax"] = annot.top + annot.height
                img_annotation_box["color"] = (0,0,0)
                try:
                    img_annotation_box["label"] = annot.entity_type
                except:
                    img_annotation_box["label"] = "Redaction"
                # if hasattr(annot, 'text') and annot.text:
                #     img_annotation_box["text"] = annot.text
                # else:
                #     img_annotation_box["text"] = ""

            rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2)  # Create the PyMuPDF Rect

        # Else it should be a pikepdf annotation object
        else:
            if convert_coords == True:    
                pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_pikepdf_coords_to_pymupdf(page, annot)
            else:
                pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image, type="pikepdf_image_coords")

            x1 = pymupdf_x1
            x2 = pymupdf_x2

            rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2)

            img_annotation_box = {}

            if image:
                img_width, img_height = image.size

                print("annot:", annot)

                x1, image_y1, x2, image_y2 = convert_pymupdf_to_image_coords(page, x1, pymupdf_y1, x2, pymupdf_y2, image)

                img_annotation_box["xmin"] = x1  #* (img_width / rect_width) # Use adjusted x1
                img_annotation_box["ymin"] = image_y1  #* (img_width / rect_width) # Use adjusted y1
                img_annotation_box["xmax"] = x2# * (img_height / rect_height) # Use adjusted x2
                img_annotation_box["ymax"] = image_y2 #* (img_height / rect_height) # Use adjusted y2
                img_annotation_box["color"] = (0, 0, 0)

                if isinstance(annot, Dictionary):
                    img_annotation_box["label"] = str(annot["/T"])
                else:
                    img_annotation_box["label"] = "REDACTION"
                # if hasattr(annot, 'text') and annot.text:
                #     img_annotation_box["text"] = annot.text
                # else:
                #     img_annotation_box["text"] = ""

        # Convert to a PyMuPDF Rect object
        #rect = Rect(rect_coordinates)

        all_image_annotation_boxes.append(img_annotation_box)

        redact_single_box(page, rect, img_annotation_box, custom_colours)

    # If whole page is to be redacted, do that here
    if redact_whole_page == True:

        whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours, border = 5)
        all_image_annotation_boxes.append(whole_page_img_annotation_box)

    out_annotation_boxes = {
        "image": image_path, #Image.open(image_path), #image_path,
        "boxes": all_image_annotation_boxes
    }

    


    page.apply_redactions(images=0, graphics=0)
    page.clean_contents()

    return page, out_annotation_boxes



def merge_img_bboxes(bboxes, combined_results: Dict, signature_recogniser_results=[], handwriting_recogniser_results=[], handwrite_signature_checkbox: List[str]=["Redact all identified handwriting", "Redact all identified signatures"], horizontal_threshold:int=50, vertical_threshold:int=12):

    all_bboxes = []
    merged_bboxes = []
    grouped_bboxes = defaultdict(list)

    # Deep copy original bounding boxes to retain them
    original_bboxes = copy.deepcopy(bboxes)

    # Process signature and handwriting results
    if signature_recogniser_results or handwriting_recogniser_results:
        if "Redact all identified handwriting" in handwrite_signature_checkbox:
            merged_bboxes.extend(copy.deepcopy(handwriting_recogniser_results))

        if "Redact all identified signatures" in handwrite_signature_checkbox:
            merged_bboxes.extend(copy.deepcopy(signature_recogniser_results))

    # Reconstruct bounding boxes for substrings of interest
    reconstructed_bboxes = []
    for bbox in bboxes:
        bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height)
        for line_text, line_info in combined_results.items():
            line_box = line_info['bounding_box']
            if bounding_boxes_overlap(bbox_box, line_box):
                if bbox.text in line_text:
                    start_char = line_text.index(bbox.text)
                    end_char = start_char + len(bbox.text)

                    relevant_words = []
                    current_char = 0
                    for word in line_info['words']:
                        word_end = current_char + len(word['text'])
                        if current_char <= start_char < word_end or current_char < end_char <= word_end or (start_char <= current_char and word_end <= end_char):
                            relevant_words.append(word)
                        if word_end >= end_char:
                            break
                        current_char = word_end
                        if not word['text'].endswith(' '):
                            current_char += 1  # +1 for space if the word doesn't already end with a space

                    if relevant_words:
                        left = min(word['bounding_box'][0] for word in relevant_words)
                        top = min(word['bounding_box'][1] for word in relevant_words)
                        right = max(word['bounding_box'][2] for word in relevant_words)
                        bottom = max(word['bounding_box'][3] for word in relevant_words)

                        combined_text = " ".join(word['text'] for word in relevant_words)

                        reconstructed_bbox = CustomImageRecognizerResult(
                            bbox.entity_type,
                            bbox.start,
                            bbox.end,
                            bbox.score,
                            left,
                            top,
                            right - left,  # width
                            bottom - top,  # height,
                            combined_text
                        )
                        #reconstructed_bboxes.append(bbox)  # Add original bbox
                        reconstructed_bboxes.append(reconstructed_bbox)  # Add merged bbox
                        break
        else:
            reconstructed_bboxes.append(bbox)

    # Group reconstructed bboxes by approximate vertical proximity
    for box in reconstructed_bboxes:
        grouped_bboxes[round(box.top / vertical_threshold)].append(box)

    # Merge within each group
    for _, group in grouped_bboxes.items():
        group.sort(key=lambda box: box.left)

        merged_box = group[0]
        for next_box in group[1:]:
            if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
                new_text = merged_box.text + " " + next_box.text
                new_entity_type = merged_box.entity_type + " - " + next_box.entity_type

                new_left = min(merged_box.left, next_box.left)
                new_top = min(merged_box.top, next_box.top)
                new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
                new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top

                merged_box = CustomImageRecognizerResult(
                    new_entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height, new_text
                )
            else:
                merged_bboxes.append(merged_box)
                merged_box = next_box

        merged_bboxes.append(merged_box)

    all_bboxes.extend(original_bboxes)
    #all_bboxes.extend(reconstructed_bboxes)
    all_bboxes.extend(merged_bboxes)

    # Return the unique original and merged bounding boxes
    unique_bboxes = list({(bbox.left, bbox.top, bbox.width, bbox.height): bbox for bbox in all_bboxes}.values())
    return unique_bboxes

def redact_image_pdf(file_path:str,

                     prepared_pdf_file_paths:List[str],

                     language:str,

                     chosen_redact_entities:List[str],

                     chosen_redact_comprehend_entities:List[str],

                     allow_list:List[str]=None,

                     is_a_pdf:bool=True,

                     page_min:int=0,

                     page_max:int=999,

                     analysis_type:str=tesseract_ocr_option,

                     handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"],

                     request_metadata:str="", current_loop_page:int=0,

                     page_break_return:bool=False,

                     images=[],

                     annotations_all_pages:List=[],

                     all_line_level_ocr_results_df = pd.DataFrame(),

                     all_decision_process_table = pd.DataFrame(),

                     pymupdf_doc = [],

                     pii_identification_method:str="Local",

                     comprehend_query_number:int=0,

                     comprehend_client:str="",

                     textract_client:str="",

                     custom_recogniser_word_list:List[str]=[],

                     redact_whole_page_list:List[str]=[],

                     page_break_val:int=int(page_break_value),

                     log_files_output_paths:List=[],

                     max_time:int=int(max_time_value),                                       

                     progress=Progress(track_tqdm=True)):

    '''

    This function redacts sensitive information from a PDF document. It takes the following parameters:



    - file_path (str): The path to the PDF file to be redacted.

    - prepared_pdf_file_paths (List[str]): A list of paths to the PDF file pages converted to images.

    - language (str): The language of the text in the PDF.

    - chosen_redact_entities (List[str]): A list of entity types to redact from the PDF.

    - chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from the list allowed by the AWS Comprehend service.

    - allow_list (List[str], optional): A list of entity types to allow in the PDF. Defaults to None.

    - is_a_pdf (bool, optional): Indicates if the input file is a PDF. Defaults to True.

    - page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.

    - page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.

    - analysis_type (str, optional): The type of analysis to perform on the PDF. Defaults to tesseract_ocr_option.

    - handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Redact all identified handwriting", "Redact all identified signatures"].

    - request_metadata (str, optional): Metadata related to the redaction request. Defaults to an empty string.

    - page_break_return (bool, optional): Indicates if the function should return after a page break. Defaults to False.

    - images (list, optional): List of image objects for each PDF page.

    - annotations_all_pages (List, optional): List of annotations on all pages that is used by the gradio_image_annotation object.

    - all_line_level_ocr_results_df (pd.DataFrame(), optional): All line level OCR results for the document as a Pandas dataframe,

    - all_decision_process_table (pd.DataFrame(), optional): All redaction decisions for document as a Pandas dataframe.

    - pymupdf_doc (List, optional): The document as a PyMupdf object.

    - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).

    - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.

    - comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.

    - textract_client (optional): A connection to the AWS Textract service via the boto3 package.

    - custom_recogniser_word_list (optional): A list of custom words that the user has chosen specifically to redact.

    - redact_whole_page_list (optional, List[str]): A list of pages to fully redact.

    - page_break_val (int, optional): The value at which to trigger a page break. Defaults to 3.

    - log_files_output_paths (List, optional): List of file paths used for saving redaction process logging results.

    - max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.      

    - progress (Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.



    The function returns a fully or partially-redacted PDF document.

    '''
    file_name = get_file_path_end(file_path)
    fill = (0, 0, 0)   # Fill colour for redactions
    comprehend_query_number_new = 0

    # Update custom word list analyser object with any new words that have been added to the custom deny list
    #print("custom_recogniser_word_list:", custom_recogniser_word_list)
    if custom_recogniser_word_list:        
        nlp_analyser.registry.remove_recognizer("CUSTOM")
        new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list)
        #print("new_custom_recogniser:", new_custom_recogniser)
        nlp_analyser.registry.add_recognizer(new_custom_recogniser)

        # List all elements currently in the nlp_analyser registry
        #print("Current recognizers in nlp_analyser registry:")
        for recognizer_name in nlp_analyser.registry.recognizers:
            print(recognizer_name)

        


    image_analyser = CustomImageAnalyzerEngine(nlp_analyser)
    

    if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
        print("Connection to AWS Comprehend service unsuccessful.")

        return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number
    
    if analysis_type == textract_option and textract_client == "":
        print("Connection to AWS Textract service unsuccessful.")

        return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number

    tic = time.perf_counter()

    if not prepared_pdf_file_paths:
        out_message = "PDF does not exist as images. Converting pages to image"
        print(out_message)

        prepared_pdf_file_paths = process_file(file_path)

    number_of_pages = len(prepared_pdf_file_paths)
    print("Number of pages:", str(number_of_pages))

    # Check that page_min and page_max are within expected ranges
    if page_max > number_of_pages or page_max == 0:
        page_max = number_of_pages

    if page_min <= 0: page_min = 0
    else: page_min = page_min - 1

    print("Page range:", str(page_min + 1), "to", str(page_max))
    #print("Current_loop_page:", current_loop_page)
    
    if analysis_type == tesseract_ocr_option: ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".csv"
    elif analysis_type == textract_option: ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.csv"    
    
    # If running Textract, check if file already exists. If it does, load in existing data
    # Import results from json and convert
    if analysis_type == textract_option:
                
        json_file_path = output_folder + file_name + "_textract.json"
        log_files_output_paths.append(json_file_path)
        
        if not os.path.exists(json_file_path):
            no_textract_file = True
            print("No existing Textract results file found.")
            existing_data = {}
            #text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox)  # Analyse page with Textract
            #log_files_output_paths.append(json_file_path)
            #request_metadata = request_metadata + "\n" + new_request_metadata
            #wrapped_text_blocks = {"pages":[text_blocks]}
        else:
            # Open the file and load the JSON data
            no_textract_file = False
            print("Found existing Textract json results file.")
            with open(json_file_path, 'r') as json_file:
                existing_data = json.load(json_file)

    ###

    if current_loop_page == 0: page_loop_start = 0
    else: page_loop_start = current_loop_page

    progress_bar = tqdm(range(page_loop_start, number_of_pages), unit="pages remaining", desc="Redacting pages")

    for page_no in progress_bar:

        handwriting_or_signature_boxes = []
        signature_recogniser_results = []
        handwriting_recogniser_results = []
        page_break_return = False

        reported_page_number = str(page_no + 1)
        #print("Redacting page:", reported_page_number)
        
        # Assuming prepared_pdf_file_paths[page_no] is a PIL image object
        try:
            image = prepared_pdf_file_paths[page_no]#.copy()
            #print("image:", image)
        except Exception as e:
            print("Could not redact page:", reported_page_number, "due to:", e)    
            continue

        image_annotations = {"image": image, "boxes": []}        
        pymupdf_page = pymupdf_doc.load_page(page_no)
 
        if page_no >= page_min and page_no < page_max:    

            #print("Image is in range of pages to redact")            
            if isinstance(image, str):
                #print("image is a file path")
                image = Image.open(image)

            # Need image size to convert textract OCR outputs to the correct sizes
            page_width, page_height = image.size

            # Possibility to use different languages
            if language == 'en': ocr_lang = 'eng'
            else: ocr_lang = language

            # Step 1: Perform OCR. Either with Tesseract, or with AWS Textract
            if analysis_type == tesseract_ocr_option:
                
                word_level_ocr_results = image_analyser.perform_ocr(image)

                # Combine OCR results
                line_level_ocr_results, line_level_ocr_results_with_children = combine_ocr_results(word_level_ocr_results)

    
            # Import results from json and convert
            if analysis_type == textract_option:
                
                # Convert the image to bytes using an in-memory buffer
                image_buffer = io.BytesIO()
                image.save(image_buffer, format='PNG')  # Save as PNG, or adjust format if needed
                pdf_page_as_bytes = image_buffer.getvalue()

                if not existing_data:
                    text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox)  # Analyse page with Textract
                    log_files_output_paths.append(json_file_path)
                    request_metadata = request_metadata + "\n" + new_request_metadata

                    existing_data = {"pages":[text_blocks]}

                else:
                    # Check if the current reported_page_number exists in the loaded JSON
                    page_exists = any(page['page_no'] == reported_page_number for page in existing_data.get("pages", []))

                    if not page_exists:  # If the page does not exist, analyze again
                        print(f"Page number {reported_page_number} not found in existing Textract data. Analysing.")
                        text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox)  # Analyse page with Textract

                        # Check if "pages" key exists, if not, initialize it as an empty list
                        if "pages" not in existing_data:
                            existing_data["pages"] = []

                        # Append the new page data
                        existing_data["pages"].append(text_blocks)
                        
                        request_metadata = request_metadata + "\n" + new_request_metadata
                    else:
                        # If the page exists, retrieve the data
                        text_blocks = next(page['data'] for page in existing_data["pages"] if page['page_no'] == reported_page_number)
                
                
                # if not os.path.exists(json_file_path):
                #     text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox)  # Analyse page with Textract
                #     log_files_output_paths.append(json_file_path)
                #     request_metadata = request_metadata + "\n" + new_request_metadata

                #     existing_data = {"pages":[text_blocks]}


                # else:
                #     # Open the file and load the JSON data
                #     print("Found existing Textract json results file.")
                #     with open(json_file_path, 'r') as json_file:
                #         existing_data = json.load(json_file)

                #         # Check if the current reported_page_number exists in the loaded JSON
                #         page_exists = any(page['page_no'] == reported_page_number for page in existing_data.get("pages", []))

                #         if not page_exists:  # If the page does not exist, analyze again
                #             print(f"Page number {reported_page_number} not found in existing data. Analyzing again.")
                #             text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox)  # Analyse page with Textract

                #             # Check if "pages" key exists, if not, initialize it as an empty list
                #             if "pages" not in existing_data:
                #                 existing_data["pages"] = []

                #             # Append the new page data
                #             existing_data["pages"].append(text_blocks)

                #             # Write the updated existing_data back to the JSON file
                #             with open(json_file_path, 'w') as json_file:
                #                 json.dump(existing_data, json_file, indent=4)  # indent=4 makes the JSON file pretty-printed

                #             log_files_output_paths.append(json_file_path)
                #             request_metadata = request_metadata + "\n" + new_request_metadata
                #         else:
                #             # If the page exists, retrieve the data
                #             text_blocks = next(page['data'] for page in existing_data["pages"] if page['page_no'] == reported_page_number)

                line_level_ocr_results, handwriting_or_signature_boxes, signature_recogniser_results, handwriting_recogniser_results, line_level_ocr_results_with_children = json_to_ocrresult(text_blocks, page_width, page_height, reported_page_number)

            # Step 2: Analyze text and identify PII
            if chosen_redact_entities:

                redaction_bboxes, comprehend_query_number_new = image_analyser.analyze_text(
                    line_level_ocr_results,
                    line_level_ocr_results_with_children,
                    chosen_redact_comprehend_entities = chosen_redact_comprehend_entities,
                    pii_identification_method = pii_identification_method,
                    comprehend_client=comprehend_client,                 
                    language=language,
                    entities=chosen_redact_entities,
                    allow_list=allow_list,
                    score_threshold=score_threshold
                )                

                comprehend_query_number = comprehend_query_number + comprehend_query_number_new
                
            else:
                redaction_bboxes = []
                

            if analysis_type == tesseract_ocr_option: interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".txt"
            elif analysis_type == textract_option: interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.txt" 

            # Save decision making process
            bboxes_str = str(redaction_bboxes)
            with open(interim_results_file_path, "w") as f:
                f.write(bboxes_str)

            # Merge close bounding boxes
            merged_redaction_bboxes = merge_img_bboxes(redaction_bboxes, line_level_ocr_results_with_children, signature_recogniser_results, handwriting_recogniser_results, handwrite_signature_checkbox)
            
            # 3. Draw the merged boxes
            if is_pdf(file_path) == False:
                draw = ImageDraw.Draw(image)

                all_image_annotations_boxes = []

                for box in merged_redaction_bboxes:
                    print("box:", box)

                    x0 = box.left
                    y0 = box.top
                    x1 = x0 + box.width
                    y1 = y0 + box.height

                    try:
                        label = box.entity_type
                    except:
                        label = "Redaction"

                    # Directly append the dictionary with the required keys
                    all_image_annotations_boxes.append({
                        "xmin": x0,
                        "ymin": y0,
                        "xmax": x1,
                        "ymax": y1,
                        "label": label,
                        "color": (0, 0, 0)
                    })

                    draw.rectangle([x0, y0, x1, y1], fill=fill)  # Adjusted to use a list for rectangle

                image_annotations = {"image": file_path, "boxes": all_image_annotations_boxes}

            ## Apply annotations with pymupdf            
            else:
                #print("redact_whole_page_list:", redact_whole_page_list)
                if redact_whole_page_list:
                    if current_loop_page in redact_whole_page_list: redact_whole_page = True
                    else: redact_whole_page = False
                else: redact_whole_page = False

                pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, merged_redaction_bboxes, image, redact_whole_page=redact_whole_page)

            # Convert decision process to table
            decision_process_table = pd.DataFrame([{
                'text': result.text,
                'xmin': result.left,
                'ymin': result.top,
                'xmax': result.left + result.width,
                'ymax': result.top + result.height, 
                'label': result.entity_type,
                'start': result.start,
                'end': result.end,
                'score': result.score,
                'page': reported_page_number
                
            } for result in merged_redaction_bboxes]) #'left': result.left,
                #'top': result.top,
                #'width': result.width,
                #'height': result.height,

            all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table])

            # Convert to DataFrame and add to ongoing logging table
            line_level_ocr_results_df = pd.DataFrame([{
                'page': reported_page_number,
                'text': result.text,
                'left': result.left,
                'top': result.top,
                'width': result.width,
                'height': result.height
            } for result in line_level_ocr_results])

            all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, line_level_ocr_results_df])

            toc = time.perf_counter()

            time_taken = toc - tic

            #print("toc - tic:", time_taken)

            # Break if time taken is greater than max_time seconds
            if time_taken > max_time:
                print("Processing for", max_time, "seconds, breaking loop.")
                page_break_return = True
                progress.close(_tqdm=progress_bar)
                tqdm._instances.clear()

                if is_pdf(file_path) == False:
                    images.append(image)
                    pymupdf_doc = images

                # Check if the image already exists in annotations_all_pages
                #print("annotations_all_pages:", annotations_all_pages)
                existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None)
                if existing_index is not None:
                    # Replace the existing annotation
                    annotations_all_pages[existing_index] = image_annotations
                else:
                    # Append new annotation if it doesn't exist
                    annotations_all_pages.append(image_annotations)

                if analysis_type == textract_option:
                    # Write the updated existing textract data back to the JSON file
                    with open(json_file_path, 'w') as json_file:
                        json.dump(existing_data, json_file, indent=4)  # indent=4 makes the JSON file pretty-printed

                current_loop_page += 1

                return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number

        if is_pdf(file_path) == False:
            images.append(image)
            pymupdf_doc = images

        # Check if the image already exists in annotations_all_pages
        #print("annotations_all_pages:", annotations_all_pages)
        existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None)
        if existing_index is not None:
            # Replace the existing annotation
            annotations_all_pages[existing_index] = image_annotations
        else:
            # Append new annotation if it doesn't exist
            annotations_all_pages.append(image_annotations)

        current_loop_page += 1

        # Break if new page is a multiple of chosen page_break_val
        if current_loop_page % page_break_val == 0:
            page_break_return = True
            progress.close(_tqdm=progress_bar)
            tqdm._instances.clear()

            if analysis_type == textract_option:
                # Write the updated existing textract data back to the JSON file
                with open(json_file_path, 'w') as json_file:
                    json.dump(existing_data, json_file, indent=4)  # indent=4 makes the JSON file pretty-printed

            return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number
        
    if analysis_type == textract_option:
        # Write the updated existing textract data back to the JSON file
        
        with open(json_file_path, 'w') as json_file:
            json.dump(existing_data, json_file, indent=4)  # indent=4 makes the JSON file pretty-printed

    return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number


###
# PIKEPDF TEXT PDF REDACTION
###

def get_text_container_characters(text_container:LTTextContainer):

    if isinstance(text_container, LTTextContainer):
        characters = [char
                    for line in text_container
                    if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal)
                    for char in line]
    
        return characters
    return []

def create_text_bounding_boxes_from_characters(char_objects:List[LTChar]) -> Tuple[List[OCRResult], List[LTChar]]:
    '''

    Create an OCRResult object based on a list of pdfminer LTChar objects.

    '''

    line_level_results_out = []
    line_level_characters_out = []
    #all_line_level_characters_out = []
    character_objects_out = []  # New list to store character objects

    # Initialize variables
    full_text = ""
    added_text = ""
    overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]  # [x0, y0, x1, y1]
    word_bboxes = []

    # Iterate through the character objects
    current_word = ""
    current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]  # [x0, y0, x1, y1]

    for char in char_objects:
        character_objects_out.append(char)  # Collect character objects

        if isinstance(char, LTAnno):
            # Handle space separately by finalizing the word
            full_text += char.get_text()  # Adds space or newline

            if current_word:  # Only finalize if there is a current word
                word_bboxes.append((current_word, current_word_bbox))
                current_word = ""
                current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]  # Reset for next word

            # Check for line break (assuming a new line is indicated by a specific character)
            if '\n' in char.get_text():
                #print("char_anno:", char)
                # Finalize the current line
                if current_word:
                    word_bboxes.append((current_word, current_word_bbox))
                # Create an OCRResult for the current line
                line_level_results_out.append(OCRResult(full_text, round(overall_bbox[0], 2), round(overall_bbox[1], 2), round(overall_bbox[2] - overall_bbox[0], 2), round(overall_bbox[3] - overall_bbox[1], 2)))
                line_level_characters_out.append(character_objects_out)
                # Reset for the next line
                character_objects_out = []
                full_text = ""
                overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
                current_word = ""
                current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]

            continue

        # Concatenate text for LTChar


        #full_text += char.get_text()
        #added_text = re.sub(r'[^\x00-\x7F]+', ' ', char.get_text())
        added_text = char.get_text()
        if re.search(r'[^\x00-\x7F]', added_text):  # Matches any non-ASCII character
            #added_text.encode('latin1', errors='replace').decode('utf-8')
            added_text = clean_unicode_text(added_text)
        full_text += added_text  # Adds space or newline, removing 

        

        # Update overall bounding box
        x0, y0, x1, y1 = char.bbox
        overall_bbox[0] = min(overall_bbox[0], x0)  # x0
        overall_bbox[1] = min(overall_bbox[1], y0)  # y0
        overall_bbox[2] = max(overall_bbox[2], x1)  # x1
        overall_bbox[3] = max(overall_bbox[3], y1)  # y1
        
        # Update current word
        #current_word += char.get_text()
        current_word += added_text
        
        # Update current word bounding box
        current_word_bbox[0] = min(current_word_bbox[0], x0)  # x0
        current_word_bbox[1] = min(current_word_bbox[1], y0)  # y0
        current_word_bbox[2] = max(current_word_bbox[2], x1)  # x1
        current_word_bbox[3] = max(current_word_bbox[3], y1)  # y1

    # Finalize the last word if any
    if current_word:
        word_bboxes.append((current_word, current_word_bbox))

    if full_text:
        #print("full_text before:", full_text)
        if re.search(r'[^\x00-\x7F]', full_text):  # Matches any non-ASCII character
            # Convert special characters to a human-readable format
            #full_text = full_text.encode('latin1', errors='replace').decode('utf-8')
            full_text = clean_unicode_text(full_text)
        #print("full_text:", full_text)

        line_level_results_out.append(OCRResult(full_text, round(overall_bbox[0],2), round(overall_bbox[1], 2), round(overall_bbox[2]-overall_bbox[0],2), round(overall_bbox[3]-overall_bbox[1],2)))

    #line_level_characters_out = character_objects_out        

    return line_level_results_out, line_level_characters_out  # Return both results and character objects

def merge_text_bounding_boxes(analyser_results, characters: List[LTChar], combine_pixel_dist: int = 20, vertical_padding: int = 0):
    '''

    Merge identified bounding boxes containing PII that are very close to one another

    '''
    analysed_bounding_boxes = []
    original_bounding_boxes = []  # List to hold original bounding boxes

    if len(analyser_results) > 0 and len(characters) > 0:
        # Extract bounding box coordinates for sorting
        bounding_boxes = []
        for result in analyser_results:
            #print("Result:", result)
            char_boxes = [char.bbox for char in characters[result.start:result.end] if isinstance(char, LTChar)]
            char_text = [char._text for char in characters[result.start:result.end] if isinstance(char, LTChar)]
            if char_boxes:
                # Calculate the bounding box that encompasses all characters
                left = min(box[0] for box in char_boxes)
                bottom = min(box[1] for box in char_boxes)
                right = max(box[2] for box in char_boxes)
                top = max(box[3] for box in char_boxes) + vertical_padding
                bbox = [left, bottom, right, top]
                bounding_boxes.append((bottom, left, result, bbox, char_text))  # (y, x, result, bbox, text)

                # Store original bounding boxes
                original_bounding_boxes.append({"text": "".join(char_text), "boundingBox": bbox, "result": copy.deepcopy(result)})
                #print("Original bounding boxes:", original_bounding_boxes)

        # Sort the results by y-coordinate and then by x-coordinate
        bounding_boxes.sort()

        merged_bounding_boxes = []
        current_box = None
        current_y = None
        current_result = None
        current_text = []

        for y, x, result, next_box, text in bounding_boxes:
            if current_y is None or current_box is None:
                # Initialize the first bounding box
                current_box = next_box
                current_y = next_box[1]
                current_result = result
                current_text = list(text)
            else:
                vertical_diff_bboxes = abs(next_box[1] - current_y)
                horizontal_diff_bboxes = abs(next_box[0] - current_box[2])

                if vertical_diff_bboxes <= 5 and horizontal_diff_bboxes <= combine_pixel_dist:
                    # Merge bounding boxes
                    #print("Merging boxes")
                    merged_box = current_box.copy()
                    merged_result = current_result
                    merged_text = current_text.copy()

                    #print("current_box_max_x:", current_box[2])
                    #print("char_max_x:", next_box[2])

                    merged_box[2] = next_box[2]  # Extend horizontally
                    merged_box[3] = max(current_box[3], next_box[3])  # Adjust the top
                    merged_result.end = max(current_result.end, result.end)  # Extend text range
                    try:
                        merged_result.entity_type = current_result.entity_type + " - " + result.entity_type
                    except Exception as e:
                        print("Unable to combine result entity types:", e)
                    if current_text:
                        merged_text.append(" ")  # Add space between texts
                    merged_text.extend(text)

                    merged_bounding_boxes.append({
                        "text": "".join(merged_text),
                        "boundingBox": merged_box,
                        "result": merged_result
                    })

                else:
                    # Save the current merged box before starting a new one
                    # merged_bounding_boxes.append({
                    #     "text": "".join(current_text),
                    #     "boundingBox": current_box,
                    #     "result": current_result
                    # })
                    # Start a new bounding box
                    current_box = next_box
                    current_y = next_box[1]
                    current_result = result
                    current_text = list(text)

        # Handle the last box
        # if current_box is not None:
        #     merged_bounding_boxes.append({
        #         "text": "".join(current_text),
        #         "boundingBox": current_box,
        #         "result": current_result
        #     })

        # Combine original and merged bounding boxes
        analysed_bounding_boxes.extend(original_bounding_boxes)
        analysed_bounding_boxes.extend(merged_bounding_boxes)

        #print("Analysed bounding boxes:", analysed_bounding_boxes)

    return analysed_bounding_boxes

def create_text_redaction_process_results(analyser_results, analysed_bounding_boxes, page_num):
    decision_process_table = pd.DataFrame()

    if len(analyser_results) > 0:
        # Create summary df of annotations to be made
        analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes)

        # Remove brackets and split the string into four separate columns
        #print("analysed_bounding_boxes_df_new:", analysed_bounding_boxes_df_new['boundingBox'])
        # analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new['boundingBox'].str.strip('[]').str.split(',', expand=True)

        # Split the boundingBox list into four separate columns
        analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new['boundingBox'].apply(pd.Series)

        # Convert the new columns to integers (if needed)
        analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']].astype(float)

        analysed_bounding_boxes_df_text = analysed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
        analysed_bounding_boxes_df_text.columns = ["label", "start", "end", "score"]
        analysed_bounding_boxes_df_new = pd.concat([analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis = 1)
        analysed_bounding_boxes_df_new['page'] = page_num + 1
        decision_process_table = pd.concat([decision_process_table, analysed_bounding_boxes_df_new], axis = 0).drop('result', axis=1)

        #print('\n\ndecision_process_table:\n\n', decision_process_table)
    
    return decision_process_table

def create_pikepdf_annotations_for_bounding_boxes(analysed_bounding_boxes):
    pikepdf_annotations_on_page = []
    for analysed_bounding_box in analysed_bounding_boxes:
        bounding_box = analysed_bounding_box["boundingBox"]
        annotation = Dictionary(
            Type=Name.Annot,
            Subtype=Name.Square, #Name.Highlight,
            QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3],
                        bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
            Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
            C=[0, 0, 0],
            IC=[0, 0, 0],
            CA=1, # Transparency
            T=analysed_bounding_box["result"].entity_type,
            BS=Dictionary(
                W=0,                     # Border width: 1 point
                S=Name.S                # Border style: solid
            )
        )
        pikepdf_annotations_on_page.append(annotation)
    return pikepdf_annotations_on_page

def redact_text_pdf(

    filename: str,  # Path to the PDF file to be redacted

    prepared_pdf_image_path: str,  # Path to the prepared PDF image for redaction

    language: str,  # Language of the PDF content

    chosen_redact_entities: List[str],  # List of entities to be redacted

    chosen_redact_comprehend_entities: List[str],

    allow_list: List[str] = None,  # Optional list of allowed entities

    page_min: int = 0,  # Minimum page number to start redaction

    page_max: int = 999,  # Maximum page number to end redaction

    analysis_type: str = text_ocr_option,  # Type of analysis to perform

    current_loop_page: int = 0,  # Current page being processed in the loop

    page_break_return: bool = False,  # Flag to indicate if a page break should be returned

    annotations_all_pages: List = [],  # List of annotations across all pages

    all_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(),  # DataFrame for OCR results

    all_decision_process_table: pd.DataFrame = pd.DataFrame(),  # DataFrame for decision process table

    pymupdf_doc: List = [],  # List of PyMuPDF documents

    pii_identification_method: str = "Local",

    comprehend_query_number:int = 0,

    comprehend_client="",

    custom_recogniser_word_list:List[str]=[],

    redact_whole_page_list:List[str]=[],

    page_break_val: int = int(page_break_value),  # Value for page break

    max_time: int = int(max_time_value),    

    progress: Progress = Progress(track_tqdm=True)  # Progress tracking object

):
    
    '''

    Redact chosen entities from a PDF that is made up of multiple pages that are not images.

    

    Input Variables:

    - filename: Path to the PDF file to be redacted

    - prepared_pdf_image_path: Path to the prepared PDF image for redaction

    - language: Language of the PDF content

    - chosen_redact_entities: List of entities to be redacted

    - chosen_redact_comprehend_entities: List of entities to be redacted for AWS Comprehend

    - allow_list: Optional list of allowed entities

    - page_min: Minimum page number to start redaction

    - page_max: Maximum page number to end redaction

    - analysis_type: Type of analysis to perform

    - current_loop_page: Current page being processed in the loop

    - page_break_return: Flag to indicate if a page break should be returned

    - annotations_all_pages: List of annotations across all pages

    - all_line_level_ocr_results_df: DataFrame for OCR results

    - all_decision_process_table: DataFrame for decision process table

    - pymupdf_doc: List of PyMuPDF documents

    - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).

    - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.

    - comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.

    - custom_recogniser_word_list (optional, List[str]): A list of custom words that the user has chosen specifically to redact.

    - redact_whole_page_list (optional, List[str]): A list of pages to fully redact.

    - page_break_val: Value for page break

    - max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.     

    - progress: Progress tracking object

    '''

    if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
        print("Connection to AWS Comprehend service not found.")

        return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number
    
    # Update custom word list analyser object with any new words that have been added to the custom deny list
    #print("custom_recogniser_word_list:", custom_recogniser_word_list)
    if custom_recogniser_word_list:        
        nlp_analyser.registry.remove_recognizer("CUSTOM")
        new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list)
        #print("new_custom_recogniser:", new_custom_recogniser)
        nlp_analyser.registry.add_recognizer(new_custom_recogniser)

        # List all elements currently in the nlp_analyser registry
        #print("Current recognizers in nlp_analyser registry:")
        #for recognizer_name in nlp_analyser.registry.recognizers:
        #    print(recognizer_name)

        #print("Custom recogniser:", nlp_analyser.registry.)

    tic = time.perf_counter()

    # Open with Pikepdf to get text lines
    pikepdf_pdf = Pdf.open(filename)
    number_of_pages = len(pikepdf_pdf.pages)
    
    # Check that page_min and page_max are within expected ranges
    if page_max > number_of_pages or page_max == 0:
        page_max = number_of_pages

    if page_min <= 0: page_min = 0
    else: page_min = page_min - 1

    print("Page range is",str(page_min + 1), "to", str(page_max))
    print("Current_loop_page:", current_loop_page)

    if current_loop_page == 0: page_loop_start = 0
    else: page_loop_start = current_loop_page

    progress_bar = tqdm(range(current_loop_page, number_of_pages), unit="pages remaining", desc="Redacting pages")

    #for page_no in range(0, number_of_pages):     
    for page_no in progress_bar:

        reported_page_number = str(page_no + 1)
        print("Redacting page:", reported_page_number)

        # Assuming prepared_pdf_file_paths[page_no] is a PIL image object
        try:
            image = prepared_pdf_image_path[page_no]#.copy()
            #print("image:", image)
        except Exception as e:
            print("Could not redact page:", reported_page_number, "due to:")
            print(e)
            continue

        image_annotations = {"image": image, "boxes": []} 
        pymupdf_page = pymupdf_doc.load_page(page_no)

        if page_min <= page_no < page_max:

            if isinstance(image, str):
                image_path = image
                image = Image.open(image_path)

            for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1):
                
                page_analyser_results = []
                page_analysed_bounding_boxes = []            
                
                characters = []
                pikepdf_annotations_on_page = []
                decision_process_table_on_page = pd.DataFrame()    
                page_text_outputs = pd.DataFrame()  

                if analysis_type == text_ocr_option:
                    for n, text_container in enumerate(page_layout):

                        text_container_analyser_results = []
                        text_container_analysed_bounding_boxes = []
                        characters = []

                        if isinstance(text_container, LTTextContainer) or isinstance(text_container, LTAnno):
                            characters = get_text_container_characters(text_container)

                        # Create dataframe for all the text on the page
                        line_level_text_results_list, line_characters = create_text_bounding_boxes_from_characters(characters)

                        # Create page_text_outputs (OCR format outputs)
                        if line_level_text_results_list:
                            # Convert to DataFrame and add to ongoing logging table
                            line_level_text_results_df = pd.DataFrame([{
                                'page': page_no + 1,
                                'text': result.text,
                                'left': result.left,
                                'top': result.top,
                                'width': result.width,
                                'height': result.height
                            } for result in line_level_text_results_list])

                            page_text_outputs = pd.concat([page_text_outputs, line_level_text_results_df])

                        # Initialize batching variables
                        current_batch = ""
                        current_batch_mapping = []  # List of (start_pos, line_index, OCRResult) tuples
                        all_text_line_results = []  # Store results for all lines

                        # First pass: collect all lines into batches
                        for i, text_line in enumerate(line_level_text_results_list):
                            if chosen_redact_entities:
                                if pii_identification_method == "Local":

                                    #print("chosen_redact_entities:", chosen_redact_entities)

                                    # Process immediately for local analysis
                                    text_line_analyser_result = nlp_analyser.analyze(
                                        text=text_line.text,
                                        language=language,
                                        entities=chosen_redact_entities,
                                        score_threshold=score_threshold,
                                        return_decision_process=True,
                                        allow_list=allow_list
                                    )
                                    all_text_line_results.append((i, text_line_analyser_result))

                                                                    
                                elif pii_identification_method == "AWS Comprehend":

                                    # First use the local Spacy model to pick up custom entities that AWS Comprehend can't search for.
                                    custom_redact_entities = [entity for entity in chosen_redact_comprehend_entities if entity in custom_entities]


                                    text_line_analyser_result = nlp_analyser.analyze(
                                        text=text_line.text,
                                        language=language,
                                        entities=custom_redact_entities,
                                        score_threshold=score_threshold,
                                        return_decision_process=True,
                                        allow_list=allow_list
                                    )
                                    all_text_line_results.append((i, text_line_analyser_result))


                                    if len(text_line.text) >= 3:
                                        # Add separator between lines
                                        if current_batch:
                                            current_batch += " | "
                                        
                                        start_pos = len(current_batch)
                                        current_batch += text_line.text
                                        current_batch_mapping.append((start_pos, i, text_line))

                                        # Process batch if approaching 300 characters or last line
                                        if len(current_batch) >= 200 or i == len(line_level_text_results_list) - 1:
                                            print("length of text for Comprehend:", len(current_batch))
                                            
                                            try:
                                                response = comprehend_client.detect_pii_entities(
                                                    Text=current_batch,
                                                    LanguageCode=language
                                                )
                                            except Exception as e:
                                                print(e)
                                                time.sleep(3)
                                                response = comprehend_client.detect_pii_entities(
                                                    Text=current_batch,
                                                    LanguageCode=language
                                                )

                                            comprehend_query_number += 1

                                            # Process response and map back to original lines
                                            if response and "Entities" in response:
                                                for entity in response["Entities"]:
                                                    entity_start = entity["BeginOffset"]
                                                    entity_end = entity["EndOffset"]

                                                    # Find which line this entity belongs to
                                                    for batch_start, line_idx, original_line in current_batch_mapping:
                                                        batch_end = batch_start + len(original_line.text)

                                                        # Check if entity belongs to this line
                                                        if batch_start <= entity_start < batch_end:
                                                            # Adjust offsets relative to original line
                                                            relative_start = entity_start - batch_start
                                                            relative_end = min(entity_end - batch_start, len(original_line.text))
                                                            
                                                            result_text = original_line.text[relative_start:relative_end]

                                                            if result_text not in allow_list:
                                                                if entity.get("Type") in chosen_redact_comprehend_entities:
                                                                    # Create adjusted entity
                                                                    adjusted_entity = entity.copy()
                                                                    adjusted_entity["BeginOffset"] = relative_start
                                                                    adjusted_entity["EndOffset"] = relative_end

                                                                    recogniser_entity = recognizer_result_from_dict(adjusted_entity)
                                                                    
                                                                    # Add to results for this line
                                                                    existing_results = next((results for idx, results in all_text_line_results if idx == line_idx), [])
                                                                    if not existing_results:
                                                                        all_text_line_results.append((line_idx, [recogniser_entity]))
                                                                    else:
                                                                        existing_results.append(recogniser_entity)

                                            # Reset batch
                                            current_batch = ""
                                            current_batch_mapping = []

                        # Second pass: process results for each line
                        for i, text_line in enumerate(line_level_text_results_list):
                            text_line_analyser_result = []
                            text_line_bounding_boxes = []

                            # Get results for this line
                            line_results = next((results for idx, results in all_text_line_results if idx == i), [])
                            
                            if line_results:
                                text_line_analyser_result = line_results

                                #print("Analysed text container, now merging bounding boxes")

                                # Merge bounding boxes if very close together
                                text_line_bounding_boxes = merge_text_bounding_boxes(text_line_analyser_result, line_characters[i])

                                #print("merged bounding boxes")

                                text_container_analyser_results.extend(text_line_analyser_result)
                                text_container_analysed_bounding_boxes.extend(text_line_bounding_boxes)

                                #print("text_container_analyser_results:", text_container_analyser_results)

                                page_analyser_results.extend(text_container_analyser_results)  # Add this line
                                page_analysed_bounding_boxes.extend(text_line_bounding_boxes)  # Add this line


                #print("page_analyser_results:", page_analyser_results)
                #print("page_analysed_bounding_boxes:", page_analysed_bounding_boxes)
                #print("image:", image)

                page_analysed_bounding_boxes = convert_pikepdf_decision_output_to_image_coords(pymupdf_page, page_analysed_bounding_boxes, image)

                #print("page_analysed_bounding_boxes_out_converted:", page_analysed_bounding_boxes)

                # Annotate redactions on page
                pikepdf_annotations_on_page = create_pikepdf_annotations_for_bounding_boxes(page_analysed_bounding_boxes)

                #print("pikepdf_annotations_on_page:", pikepdf_annotations_on_page)

                # Make pymupdf page redactions
                #print("redact_whole_page_list:", redact_whole_page_list)
                if redact_whole_page_list:                    
                    if current_loop_page in redact_whole_page_list: redact_whole_page = True
                    else: redact_whole_page = False
                else: redact_whole_page = False

                pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, pikepdf_annotations_on_page, image, redact_whole_page=redact_whole_page, convert_coords=False)

                #print("image_annotations:", image_annotations)

                #print("Did redact_page_with_pymupdf function")
                reported_page_no = page_no + 1
                print("For page number:", reported_page_no, "there are", len(image_annotations["boxes"]), "annotations")

                # Write logs
                # Create decision process table
                decision_process_table_on_page = create_text_redaction_process_results(page_analyser_results, page_analysed_bounding_boxes, current_loop_page)     

                if not decision_process_table_on_page.empty:
                    all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table_on_page])
                    #print("all_decision_process_table:", all_decision_process_table)

                if not page_text_outputs.empty:
                    page_text_outputs = page_text_outputs.sort_values(["top", "left"], ascending=[False, False]).reset_index(drop=True)
                    all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, page_text_outputs])

                toc = time.perf_counter()

                time_taken = toc - tic

                #print("toc - tic:", time_taken)

                # Break if time taken is greater than max_time seconds
                if time_taken > max_time:
                    print("Processing for", max_time, "seconds, breaking.")
                    page_break_return = True
                    progress.close(_tqdm=progress_bar)
                    tqdm._instances.clear()

                    # Check if the image already exists in annotations_all_pages
                    existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None)
                    if existing_index is not None:
                        # Replace the existing annotation
                        annotations_all_pages[existing_index] = image_annotations
                    else:
                        # Append new annotation if it doesn't exist
                        annotations_all_pages.append(image_annotations)

                    current_loop_page += 1

                    return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number
                

        # Check if the image already exists in annotations_all_pages
        existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None)
        if existing_index is not None:
            # Replace the existing annotation
            annotations_all_pages[existing_index] = image_annotations
        else:
            # Append new annotation if it doesn't exist
            annotations_all_pages.append(image_annotations)

        current_loop_page += 1

        # Break if new page is a multiple of 10
        if current_loop_page % page_break_val == 0:
            page_break_return = True
            progress.close(_tqdm=progress_bar)

            return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number
        
            
    return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number