Spaces:
Sleeping
Sleeping
File size: 5,711 Bytes
a9c2120 ceb8617 a9c2120 99d6fba a9c2120 ceb8617 99d6fba ceb8617 a9c2120 ceb8617 a9c2120 99d6fba a9c2120 99d6fba a9c2120 99d6fba a9c2120 99d6fba a9c2120 99d6fba a9c2120 99d6fba a9c2120 99d6fba a9c2120 99d6fba a9c2120 99d6fba ceb8617 a9c2120 ceb8617 a9c2120 ceb8617 a9c2120 99d6fba a9c2120 99d6fba a9c2120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# ## Some functions to clean text
import re
import string
import polars as pl
# Add calendar months onto stop words
import calendar
#from tqdm import tqdm
import gradio as gr
# Adding custom words to the stopwords
custom_words = []
my_stop_words = custom_words
cal_month = (list(calendar.month_name))
cal_month = [x.lower() for x in cal_month]
# Remove blanks
cal_month = [i for i in cal_month if i]
#print(cal_month)
custom_words.extend(cal_month)
# #### Some of my cleaning functions
email_start_pattern_regex = r'.*importance:|.*subject:'
email_end_pattern_regex = r'kind regards.*|many thanks.*|sincerely.*'
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| '
email_pattern_regex = r'\S*@\S*\s?'
num_pattern_regex = r'[0-9]+'
postcode_pattern_regex = r'(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$)'
warning_pattern_regex = r'caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.'
nbsp_pattern_regex = r' '
# Pre-compiling the regular expressions for efficiency
email_start_pattern = re.compile(email_start_pattern_regex)
email_end_pattern = re.compile(email_end_pattern_regex)
html_pattern = re.compile(html_pattern_regex)
email_pattern = re.compile(email_end_pattern_regex)
num_pattern = re.compile(num_pattern_regex)
postcode_pattern = re.compile(postcode_pattern_regex)
warning_pattern = re.compile(warning_pattern_regex)
nbsp_pattern = re.compile(nbsp_pattern_regex)
# def stem_sentence(sentence):
# words = sentence.split()
# stemmed_words = [stemmer.stem(word).lower().rstrip("'") for word in words]
# return stemmed_words
# def stem_sentences(sentences, progress=gr.Progress()):
# """Stem each sentence in a list of sentences."""
# stemmed_sentences = [stem_sentence(sentence) for sentence in progress.tqdm(sentences)]
# return stemmed_sentences
# def get_lemma_text(text):
# # Tokenize the input string into words
# tokens = word_tokenize(text)
# lemmas = []
# for word in tokens:
# if len(word) > 3:
# lemma = wn.morphy(word)
# else:
# lemma = None
# if lemma is None:
# lemmas.append(word)
# else:
# lemmas.append(lemma)
# return lemmas
# def get_lemma_tokens(tokens):
# Tokenize the input string into words
# lemmas = []
# for word in tokens:
# if len(word) > 3:
# lemma = wn.morphy(word)
# else:
# lemma = None
# if lemma is None:
# lemmas.append(word)
# else:
# lemmas.append(lemma)
# return lemmas
def initial_clean(texts , progress=gr.Progress()):
texts = pl.Series(texts)#[]
text = texts.str.replace_all(email_start_pattern_regex, '')
text = text.str.replace_all(email_end_pattern_regex, '')
text = text.str.replace_all(html_pattern_regex, '')
text = text.str.replace_all(email_pattern_regex, '')
text = text.to_list()
return text
def remove_hyphens(text_text):
return re.sub(r'(\w+)-(\w+)-?(\w)?', r'\1 \2 \3', text_text)
def remove_characters_after_tokenization(tokens):
pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens])
return filtered_tokens
def convert_to_lowercase(tokens):
return [token.lower() for token in tokens if token.isalpha()]
def remove_short_tokens(tokens):
return [token for token in tokens if len(token) > 3]
def remove_dups_text(data_samples_ready, data_samples_clean, data_samples):
# Identify duplicates in the data: https://stackoverflow.com/questions/44191465/efficiently-identify-duplicates-in-large-list-500-000
# Only identifies the second duplicate
seen = set()
dups = []
for i, doi in enumerate(data_samples_ready):
if doi not in seen:
seen.add(doi)
else:
dups.append(i)
#data_samples_ready[dupes[0:]]
# To see a specific duplicated value you know the position of
#matching = [s for s in data_samples_ready if data_samples_ready[83] in s]
#matching
# Remove duplicates only (keep first instance)
#data_samples_ready = list( dict.fromkeys(data_samples_ready) ) # This way would keep one version of the duplicates
### Remove all duplicates including original instance
# Identify ALL duplicates including initial values
# https://stackoverflow.com/questions/11236006/identify-duplicate-values-in-a-list-in-python
from collections import defaultdict
D = defaultdict(list)
for i,item in enumerate(data_samples_ready):
D[item].append(i)
D = {k:v for k,v in D.items() if len(v)>1}
# https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-a-list-of-lists
L = list(D.values())
flat_list_dups = [item for sublist in L for item in sublist]
# https://stackoverflow.com/questions/11303225/how-to-remove-multiple-indexes-from-a-list-at-the-same-time
for index in sorted(flat_list_dups, reverse=True):
del data_samples_ready[index]
del data_samples_clean[index]
del data_samples[index]
# Remove blanks
data_samples_ready = [i for i in data_samples_ready if i]
data_samples_clean = [i for i in data_samples_clean if i]
data_samples = [i for i in data_samples if i]
return data_samples_ready, data_samples_clean, flat_list_dups, data_samples
|